BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 7860733)

  • 41. A novel cryptic exon identified in the 3' region of intron 2 of the human dystrophin gene.
    Tran VK; Zhang Z; Yagi M; Nishiyama A; Habara Y; Takeshima Y; Matsuo M
    J Hum Genet; 2005; 50(8):425-433. PubMed ID: 16133659
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surveying cis-acting sequences of pre-mRNA by adding antisense 2'-O-methyl oligoribonucleotides to a splicing reaction.
    Mayeda A; Hayase Y; Inoue H; Ohtsuka E; Ohshima Y
    J Biochem; 1990 Sep; 108(3):399-405. PubMed ID: 2277033
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deletion of a splice donor site ablates expression of the following exon and produces an unphosphorylated RB protein unable to bind SV40 T antigen.
    Shew JY; Chen PL; Bookstein R; Lee EY; Lee WH
    Cell Growth Differ; 1990 Jan; 1(1):17-25. PubMed ID: 1964074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A non-conserved sequence in the 5'region of the CYH2 intron from Saccharomyces cerevisiae controls splicing efficiency of the pre-mRNA.
    Swida U; Thüroff E; Steinert E; Käufer NF
    Yeast; 1988 Sep; 4(3):209-17. PubMed ID: 3059718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy.
    Rimessi P; Fabris M; Bovolenta M; Bassi E; Falzarano S; Gualandi F; Rapezzi C; Coccolo F; Perrone D; Medici A; Ferlini A
    Hum Gene Ther; 2010 Sep; 21(9):1137-46. PubMed ID: 20486769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries.
    Adams AM; Harding PL; Iversen PL; Coleman C; Fletcher S; Wilton SD
    BMC Mol Biol; 2007 Jul; 8():57. PubMed ID: 17601349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heterogous dystrophin mRNA produced by a novel splice acceptor site mutation in intermediate dystrophinopathy.
    Adachi K; Takeshima Y; Wada H; Yagi M; Nakamura H; Matsuo M
    Pediatr Res; 2003 Jan; 53(1):125-31. PubMed ID: 12508091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus.
    Feener CA; Koenig M; Kunkel LM
    Nature; 1989 Apr; 338(6215):509-11. PubMed ID: 2648158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contemporary retrotransposition of a novel non-coding gene induces exon-skipping in dystrophin mRNA.
    Awano H; Malueka RG; Yagi M; Okizuka Y; Takeshima Y; Matsuo M
    J Hum Genet; 2010 Dec; 55(12):785-90. PubMed ID: 20827276
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Upstream introns influence the efficiency of final intron removal and RNA 3'-end formation.
    Nesic D; Maquat LE
    Genes Dev; 1994 Feb; 8(3):363-75. PubMed ID: 7906237
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuronal SH-SY5Y cells use the C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing including two intronic insertion events.
    Nishida A; Minegishi M; Takeuchi A; Awano H; Niba ET; Matsuo M
    Hum Genet; 2015 Sep; 134(9):993-1001. PubMed ID: 26152642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new variant of muscle phosphofructokinase deficiency in a Japanese case with abnormal RNA splicing.
    Hamaguchi T; Nakajima H; Noguchi T; Ono A; Kono N; Tarui S; Kuwajima M; Matsuzawa Y
    Biochem Biophys Res Commun; 1994 Jul; 202(1):444-9. PubMed ID: 7518679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of exon sequences in splice site selection.
    Watakabe A; Tanaka K; Shimura Y
    Genes Dev; 1993 Mar; 7(3):407-18. PubMed ID: 8449402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved signals around the 5' splice sites in eukaryotic nuclear precursor mRNAs: G-runs are frequent in the introns and C in the exons near both 5' and 3' splice sites.
    Nussinov R
    J Biomol Struct Dyn; 1989 Apr; 6(5):985-1000. PubMed ID: 2590511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A G-to-T transversion at the splice acceptor site of dystrophin exon 14 shows multiple splicing outcomes that are not exemplified by transition mutations.
    Ota M; Takeshima Y; Nishida A; Awano H; Lee T; Yagi M; Matsuo M
    Genet Test Mol Biomarkers; 2012 Jan; 16(1):3-8. PubMed ID: 21854195
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intron sequences and the length of the downstream second exon affect the binding of hnRNP C proteins in an in vitro splicing reaction.
    Goswami P; Goldenberg CJ
    Nucleic Acids Res; 1988 Jun; 16(11):4995-5011. PubMed ID: 3290845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PRO-051, an antisense oligonucleotide for the potential treatment of Duchenne muscular dystrophy.
    Hammond SM; Wood MJ
    Curr Opin Mol Ther; 2010 Aug; 12(4):478-86. PubMed ID: 20677099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing.
    Dominski Z; Kole R
    Mol Cell Biol; 1994 Nov; 14(11):7445-54. PubMed ID: 7935459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.