These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7860785)

  • 1. Glial domains and axonal reordering in the chiasmatic region of the developing ferret.
    Reese BE; Maynard TM; Hocking DR
    J Comp Neurol; 1994 Nov; 349(2):303-24. PubMed ID: 7860785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronotopic fiber reordering and the distribution of cell adhesion and extracellular matrix molecules in the optic pathway of fetal ferrets.
    Reese BE; Johnson PT; Hocking DR; Bolles AB
    J Comp Neurol; 1997 Apr; 380(3):355-72. PubMed ID: 9087518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position of growth cones within the retinal nerve fibre layer of fetal ferrets.
    FitzGibbon T; Reese BE
    J Comp Neurol; 1992 Sep; 323(2):153-66. PubMed ID: 1401254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity in mammalian chiasmatic architecture: ipsilateral axons are deflected at glial arches in the prechiasmatic optic nerve of the eutherian Tupaia belangeri.
    Knabe W; Washausen S; Happel N; Kuhn HJ
    J Comp Neurol; 2008 May; 508(3):437-57. PubMed ID: 18335540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing glial organization relates to changing fiber order in the developing optic nerve of ferrets.
    Guillery RW; Walsh C
    J Comp Neurol; 1987 Nov; 265(2):203-17. PubMed ID: 3693606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth.
    Wu DY; Jhaveri S; Schneider GE
    J Comp Neurol; 1995 Jul; 358(2):206-18. PubMed ID: 7560282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE; Reese BE
    J Comp Neurol; 1993 Apr; 330(1):95-104. PubMed ID: 8468406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observations on the early development of the optic nerve and tract of the mouse.
    Colello RJ; Guillery RW
    J Comp Neurol; 1992 Mar; 317(4):357-78. PubMed ID: 1578002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the chiasm of a marsupial, the quokka wallaby.
    Harman AM; Jeffery G
    J Comp Neurol; 1995 Aug; 359(3):507-21. PubMed ID: 7499544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes.
    Chauvet N; Parmentier ML; Alonso G
    J Neurosci Res; 1995 May; 41(1):129-44. PubMed ID: 7674374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precocious invasion of the optic stalk by transient retinopetal axons.
    Reese BE; Geller SF
    J Comp Neurol; 1995 Mar; 353(4):572-84. PubMed ID: 7759616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio).
    Marcus RC; Easter SS
    J Comp Neurol; 1995 Aug; 359(3):365-81. PubMed ID: 7499535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of alternating tiers in the optic chiasm of the chick embryo.
    Drenhaus U; Rager G
    Anat Rec; 1994 Dec; 240(4):555-71. PubMed ID: 7879907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in fiber order in the optic nerve and tract of rat embryos.
    Chan SO; Guillery RW
    J Comp Neurol; 1994 Jun; 344(1):20-32. PubMed ID: 8063954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways.
    Davies SJ; Field PM; Raisman G
    Exp Neurol; 1996 Dec; 142(2):203-16. PubMed ID: 8934554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The re-establishment of the representation of the dorso-ventral retinal axis in the chiasmatic region of the ferret.
    Reese BE; Baker GE
    Vis Neurosci; 1993; 10(5):957-68. PubMed ID: 8217945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.
    Arochena M; Anadón R; Díaz-Regueira SM
    J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telencephalic and diencephalic origin of radial glial processes in the developing preoptic area/anterior hypothalamus.
    Tobet SA; Paredes RG; Chickering TW; Baum MJ
    J Neurobiol; 1995 Jan; 26(1):75-86. PubMed ID: 7714527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing course of growing axons in the optic chiasm of the mouse.
    Colello SJ; Coleman LA
    J Comp Neurol; 1997 Mar; 379(4):495-514. PubMed ID: 9067839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the optic nerve in Xenopus laevis. I. Early development and organization.
    Cima C; Grant P
    J Embryol Exp Morphol; 1982 Dec; 72():225-49. PubMed ID: 7183741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.