These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7860785)

  • 21. The chronotopic reordering of optic axons.
    Reese BE
    Perspect Dev Neurobiol; 1996; 3(3):233-42. PubMed ID: 8931097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal and spatial regulation of chondroitin sulfate, radial glial cells, growing commissural axons, and other hippocampal efferents in developing hamsters.
    Braga-de-Souza S; Lent R
    J Comp Neurol; 2004 Jan; 468(2):217-32. PubMed ID: 14648681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axonal guidance during development of the optic nerve: the role of pigmented epithelia and other extrinsic factors.
    Silver J; Sapiro J
    J Comp Neurol; 1981 Nov; 202(4):521-38. PubMed ID: 7298913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early uncrossed component of the developing optic nerve with a short extracerebral course: a light and electron microscopic study of fetal ferrets.
    Guillery RW; Walsh C
    J Comp Neurol; 1987 Nov; 265(2):218-23. PubMed ID: 3693607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats.
    Blaugrund E; Lavie V; Cohen I; Solomon A; Schreyer DJ; Schwartz M
    J Comp Neurol; 1993 Apr; 330(1):105-12. PubMed ID: 8468398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica.
    Taylor JS; Guillery RW
    J Comp Neurol; 1994 Dec; 350(1):109-21. PubMed ID: 7860795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pilocytic astrocytoma of the optic pathway: a tumour deriving from radial glia cells with a specific gene signature.
    Tchoghandjian A; Fernandez C; Colin C; El Ayachi I; Voutsinos-Porche B; Fina F; Scavarda D; Piercecchi-Marti MD; Intagliata D; Ouafik L; Fraslon-Vanhulle C; Figarella-Branger D
    Brain; 2009 Jun; 132(Pt 6):1523-35. PubMed ID: 19336457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embryonic development of rat sympathetic preganglionic neurons: possible migratory substrates.
    Phelps PE; Barber RP; Vaughn JE
    J Comp Neurol; 1993 Apr; 330(1):1-14. PubMed ID: 8468397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organization of retinal axons within the optic nerve, optic chiasm, and the innervation of multiple central nervous system targets Rana pipiens.
    Montgomery NM; Tyler C; Fite KV
    J Comp Neurol; 1998 Dec; 402(2):222-37. PubMed ID: 9845245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of glial-associated proteins in the developing chick auditory brainstem.
    Korn MJ; Cramer KS
    Dev Neurobiol; 2008 Jul; 68(8):1093-106. PubMed ID: 18498086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optic chiasm and infundibular decussation sites in the developing rat diencephalon are defined by glial raphes expressing p35 (lipocortin 1, annexin I).
    McKanna JA
    Dev Dyn; 1992 Oct; 195(2):75-86. PubMed ID: 1297458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vimentin immunoreactive glial cells in the fish optic nerve: implications for regeneration.
    Cohen I; Sivron T; Lavie V; Blaugrund E; Schwartz M
    Glia; 1994 Jan; 10(1):16-29. PubMed ID: 8300190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early development of the optic nerve in the turtle Mauremys leprosa.
    Hidalgo-Sánchez M; Francisco-Morcillo J; Navascués J; Martín-Partido G
    Brain Res; 2007 Mar; 1137(1):35-49. PubMed ID: 17258694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration.
    Cohen I; Shani Y; Schwartz M
    J Comp Neurol; 1993 Aug; 334(3):431-43. PubMed ID: 8376626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in expression of fibroblast growth factor receptors during development of the mouse retinofugal pathway.
    Lin L; Taylor JS; Chan SO
    J Comp Neurol; 2002 Sep; 451(1):22-32. PubMed ID: 12209838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tanycytes present in the adult rat mediobasal hypothalamus support the regeneration of monoaminergic axons.
    Chauvet N; Prieto M; Alonso G
    Exp Neurol; 1998 May; 151(1):1-13. PubMed ID: 9582250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. R- and B-cadherin expression defines subpopulations of glial cells involved in axonal guidance in the optic nerve head of the chicken.
    Gerhardt H; Rascher G; Schuck J; Weigold U; Redies C; Wolburg H
    Glia; 2000 Aug; 31(2):131-43. PubMed ID: 10878600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glial fibrillary acidic protein and vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex: an immunocytochemical study.
    Lazzari M; Franceschini V; Ciani F
    J Hirnforsch; 1997; 38(2):187-94. PubMed ID: 9176731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions.
    Alonso G; Privat A
    J Neurosci Res; 1993 Apr; 34(5):523-38. PubMed ID: 8478987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.