BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 7860790)

  • 1. Cellular retinol-binding protein type I is prominently and differentially expressed in the sensory epithelium of the rat cochlea and vestibular organs.
    Ylikoski J; Pirvola U; Eriksson U
    J Comp Neurol; 1994 Nov; 349(4):596-602. PubMed ID: 7860790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental expression of Ca(v)1.3 (alpha1d) calcium channels in the mouse inner ear.
    Hafidi A; Dulon D
    Brain Res Dev Brain Res; 2004 Jun; 150(2):167-75. PubMed ID: 15158080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and developmental expression of nonmuscle myosin IIA (Myh9) in the mammalian inner ear.
    Mhatre AN; Li J; Kim Y; Coling DE; Lalwani AK
    J Neurosci Res; 2004 May; 76(3):296-305. PubMed ID: 15079858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of epithelial markers and retinoid-binding proteins in retinol- or retinoic acid-treated intestinal cells in vitro.
    Plateroti M; Sambuy Y; Nobili F; Bises G; Perozzi G
    Exp Cell Res; 1993 Sep; 208(1):137-47. PubMed ID: 8395395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals.
    Forge A; Becker D; Casalotti S; Edwards J; Marziano N; Nevill G
    J Comp Neurol; 2003 Dec; 467(2):207-31. PubMed ID: 14595769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased levels of several retinoid binding proteins resulting from retinoic acid-induced differentiation of F9 cells.
    Eriksson U; Hansson E; Nilsson M; Jönsson KH; Sundelin J; Peterson PA
    Cancer Res; 1986 Feb; 46(2):717-22. PubMed ID: 3000582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calbindin and S100 protein expression in the developing inner ear in mice.
    Buckiová D; Syka J
    J Comp Neurol; 2009 Apr; 513(5):469-82. PubMed ID: 19226521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGFR3 expression during development and regeneration of the chick inner ear sensory epithelia.
    Bermingham-McDonogh O; Stone JS; Reh TA; Rubel EW
    Dev Biol; 2001 Oct; 238(2):247-59. PubMed ID: 11784008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular retinol-binding protein and cellular retinoic acid-binding protein in the lacrimal gland.
    Perkovich CL; Ubels JL; Lee SY; Soprano DR
    Exp Eye Res; 1993 May; 56(5):513-9. PubMed ID: 8388804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial characterization of kinocilin, a protein of the hair cell kinocilium.
    Leibovici M; Verpy E; Goodyear RJ; Zwaenepoel I; Blanchard S; Lainé S; Richardson GP; Petit C
    Hear Res; 2005 May; 203(1-2):144-53. PubMed ID: 15855039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular retinoic acid-binding protein(II) presence in rat uterine epithelial cells correlates with their synthesis of retinoic acid.
    Bucco RA; Zheng WL; Davis JT; Sierra-Rivera E; Osteen KG; Chaudhary AK; Ong DE
    Biochemistry; 1997 Apr; 36(13):4009-14. PubMed ID: 9092831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat.
    Schug N; Braig C; Zimmermann U; Engel J; Winter H; Ruth P; Blin N; Pfister M; Kalbacher H; Knipper M
    Eur J Neurosci; 2006 Dec; 24(12):3372-80. PubMed ID: 17229086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential glycosylation of auditory and vestibular hair bundle proteins revealed by peanut agglutinin.
    Goodyear R; Richardson G
    J Comp Neurol; 1994 Jul; 345(2):267-78. PubMed ID: 7929901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.
    Li H; Liu H; Balt S; Mann S; Corrales CE; Heller S
    J Comp Neurol; 2004 Jan; 468(1):125-34. PubMed ID: 14648695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A; Sulg M; Heyd F; Alitalo K; Ylä-Herttuala S; Möröy T; Petrova TV; Pirvola U
    Dev Biol; 2008 Oct; 322(1):33-45. PubMed ID: 18652815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea.
    Drescher MJ; Drescher DG; Khan KM; Hatfield JS; Ramakrishnan NA; Abu-Hamdan MD; Lemonnier LA
    Neuroscience; 2006 Sep; 142(1):139-64. PubMed ID: 16876955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular retinoid-binding proteins.
    Ong DE
    Arch Dermatol; 1987 Dec; 123(12):1693-1695a. PubMed ID: 2825608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of the internal ear during the 1st trimester of pregnancy. Differentiation of the sensory cells and formation of the 1st synapses].
    Lavigne-Rebillard M; Dechesne C; Pujol R; Sans A; Escudero P
    Ann Otolaryngol Chir Cervicofac; 1985; 102(7):493-8. PubMed ID: 3879139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course of auditory impairment in mice lacking the electroneutral sodium bicarbonate cotransporter NBC3 (slc4a7).
    Lopez IA; Acuna D; Galbraith G; Bok D; Ishiyama A; Liu W; Kurtz I
    Brain Res Dev Brain Res; 2005 Nov; 160(1):63-77. PubMed ID: 16181686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.