These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 7861166)
21. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. Schwender J; Ohlrogge JB; Shachar-Hill Y J Biol Chem; 2003 Aug; 278(32):29442-53. PubMed ID: 12759349 [TBL] [Abstract][Full Text] [Related]
22. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism? Boros LG; Lee PW; Brandes JL; Cascante M; Muscarella P; Schirmer WJ; Melvin WS; Ellison EC Med Hypotheses; 1998 Jan; 50(1):55-9. PubMed ID: 9488183 [TBL] [Abstract][Full Text] [Related]
23. Gas chromatographic-mass spectrometric analysis of hexose monophosphate shunt activity in cultured cells. Mitchell SL; Ross BD; Krick T; Garwood M Biochem Biophys Res Commun; 1989 Jan; 158(2):474-9. PubMed ID: 2916995 [TBL] [Abstract][Full Text] [Related]
24. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes. Fan TW; Kucia M; Jankowski K; Higashi RM; Ratajczak J; Ratajczak MZ; Lane AN Mol Cancer; 2008 Oct; 7():79. PubMed ID: 18939998 [TBL] [Abstract][Full Text] [Related]
25. The effect of phenazine methosulphate on intermediary pathways of glucose metabolism in the lens at different glycaemic levels. Muirhead RP; Hothersall JS Exp Eye Res; 1995 Nov; 61(5):619-27. PubMed ID: 8654504 [TBL] [Abstract][Full Text] [Related]
26. Underestimation of the pentose-phosphate pathway in intact primary neurons as revealed by metabolic flux analysis. Rodriguez-Rodriguez P; Fernandez E; Bolaños JP J Cereb Blood Flow Metab; 2013 Dec; 33(12):1843-5. PubMed ID: 24064491 [TBL] [Abstract][Full Text] [Related]
27. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Kathagen-Buhmann A; Schulte A; Weller J; Holz M; Herold-Mende C; Glass R; Lamszus K Neuro Oncol; 2016 Sep; 18(9):1219-29. PubMed ID: 26917237 [TBL] [Abstract][Full Text] [Related]
28. Jin ES; Lee MH; Malloy CR NMR Biomed; 2021 Jul; 34(7):e4533. PubMed ID: 33900680 [TBL] [Abstract][Full Text] [Related]
29. Redox dependence and compartmentation of [13C]pyruvate in the brain of deuterated rats bearing implanted C6 gliomas. Rodrigues TB; López-Larrubia P; Cerdán S J Neurochem; 2009 May; 109 Suppl 1():237-45. PubMed ID: 19393033 [TBL] [Abstract][Full Text] [Related]
30. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes. Gutnisky C; Dalvit GC; Thompson JG; Cetica PD Reprod Fertil Dev; 2014 Aug; 26(7):931-42. PubMed ID: 23859479 [TBL] [Abstract][Full Text] [Related]
31. Regional differences in brain glucose metabolism determined by imaging mass spectrometry. Kleinridders A; Ferris HA; Reyzer ML; Rath M; Soto M; Manier ML; Spraggins J; Yang Z; Stanton RC; Caprioli RM; Kahn CR Mol Metab; 2018 Jun; 12():113-121. PubMed ID: 29681509 [TBL] [Abstract][Full Text] [Related]
32. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. Dusick JR; Glenn TC; Lee WN; Vespa PM; Kelly DF; Lee SM; Hovda DA; Martin NA J Cereb Blood Flow Metab; 2007 Sep; 27(9):1593-602. PubMed ID: 17293841 [TBL] [Abstract][Full Text] [Related]
33. Regulation of the pentose phosphate pathway in cancer. Jiang P; Du W; Wu M Protein Cell; 2014; 5(8):592-602. PubMed ID: 25015087 [TBL] [Abstract][Full Text] [Related]
34. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM. Alvarez GM; Casiró S; Gutnisky C; Dalvit GC; Sutton-McDowall ML; Thompson JG; Cetica PD Theriogenology; 2016 Dec; 86(9):2096-2106. PubMed ID: 27597631 [TBL] [Abstract][Full Text] [Related]
35. Quantitative determination of the main glucose metabolic fluxes in human erythrocytes by 13C- and 1H-MR spectroscopy. Messana I; Misiti F; el-Sherbini S; Giardina B; Castagnola M J Biochem Biophys Methods; 1999 Feb; 39(1-2):63-84. PubMed ID: 10344501 [TBL] [Abstract][Full Text] [Related]
36. Alternative pathways of glucose utilization in brain: changes in the pattern of glucose utilization and of the response of the pentose phosphate pathway to 5-hydroxytryptamine during aging. Zubairu S; Hothersall JS; El-Hassan A; McLean P; Greenbaum AL J Neurochem; 1983 Jul; 41(1):76-83. PubMed ID: 6864230 [TBL] [Abstract][Full Text] [Related]
37. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for metabolic flux analyses using isotope-labeled ethanol. Hollemeyer K; Velagapudi VR; Wittmann C; Heinzle E Rapid Commun Mass Spectrom; 2007; 21(3):336-42. PubMed ID: 17206598 [TBL] [Abstract][Full Text] [Related]
38. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis. Nargund S; Qiu J; Goudar CT Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228 [TBL] [Abstract][Full Text] [Related]
39. Use of [6,6-2H2]glucose and of low-enrichment [U-13C6]-glucose for sequential or simultaneous measurements of glucose turnover by gas chromatography-mass spectrometry. Previs SF; Ciraolo ST; Fernandez CA; Beylot M; Agarwal KC; Soloviev MV; Brunengraber H Anal Biochem; 1994 Apr; 218(1):192-6. PubMed ID: 8053553 [TBL] [Abstract][Full Text] [Related]
40. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. Marin-Valencia I; Cho SK; Rakheja D; Hatanpaa KJ; Kapur P; Mashimo T; Jindal A; Vemireddy V; Good LB; Raisanen J; Sun X; Mickey B; Choi C; Takahashi M; Togao O; Pascual JM; Deberardinis RJ; Maher EA; Malloy CR; Bachoo RM NMR Biomed; 2012 Oct; 25(10):1177-86. PubMed ID: 22383401 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]