BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7861176)

  • 1. Dopamine transporter cysteine mutants: second extracellular loop cysteines are required for transporter expression.
    Wang JB; Moriwaki A; Uhl GR
    J Neurochem; 1995 Mar; 64(3):1416-9. PubMed ID: 7861176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter.
    Ferrer JV; Javitch JA
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9238-43. PubMed ID: 9689064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains.
    Lin Z; Wang W; Uhl GR
    Mol Pharmacol; 2000 Dec; 58(6):1581-92. PubMed ID: 11093799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine transporter proline mutations influence dopamine uptake, cocaine analog recognition, and expression.
    Lin Z; Itokawa M; Uhl GR
    FASEB J; 2000 Apr; 14(5):715-28. PubMed ID: 10744628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition.
    Lin Z; Wang W; Kopajtic T; Revay RS; Uhl GR
    Mol Pharmacol; 1999 Aug; 56(2):434-47. PubMed ID: 10419565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dopamine transporter carboxyl-terminal tail. Truncation/substitution mutants selectively confer high affinity dopamine uptake while attenuating recognition of the ligand binding domain.
    Lee FJ; Pristupa ZB; Ciliax BJ; Levey AI; Niznik HB
    J Biol Chem; 1996 Aug; 271(34):20885-94. PubMed ID: 8702845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding.
    Kitayama S; Shimada S; Xu H; Markham L; Donovan DM; Uhl GR
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7782-5. PubMed ID: 1502198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter.
    Whitehead RE; Ferrer JV; Javitch JA; Justice JB
    J Neurochem; 2001 Feb; 76(4):1242-51. PubMed ID: 11181843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine transporter mutants selectively enhance MPP+ transport.
    Kitayama S; Wang JB; Uhl GR
    Synapse; 1993 Sep; 15(1):58-62. PubMed ID: 8310426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine transporter transmembrane domain polar mutants: DeltaG and DeltaDeltaG values implicate regions important for transporter functions.
    Itokawa M; Lin Z; Cai NS; Wu C; Kitayama S; Wang JB; Uhl GR
    Mol Pharmacol; 2000 Jun; 57(6):1093-103. PubMed ID: 10825379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate transport and cocaine binding of human dopamine transporter is reduced by substitution of carboxyl tail with that of bovine dopamine transporter.
    Lee SH; Cho HK; Son H; Lee YS
    Neuroreport; 1997 Jul; 8(11):2591-4. PubMed ID: 9261833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delineating structure-function relationships in the dopamine transporter from natural and engineered Zn2+ binding sites.
    Gether U; Norregaard L; Loland CJ
    Life Sci; 2001 Apr; 68(19-20):2187-98. PubMed ID: 11358327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine-533 of rat dopamine transporter: involvement in interactions with 1-methyl-4-phenylpyridinium and cocaine.
    Mitsuhata C; Kitayama S; Morita K; Vandenbergh D; Uhl GR; Dohi T
    Brain Res Mol Brain Res; 1998 May; 56(1-2):84-8. PubMed ID: 9602072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of conserved tryptophan and acidic residues in the human dopamine transporter as characterized by site-directed mutagenesis.
    Chen N; Vaughan RA; Reith ME
    J Neurochem; 2001 May; 77(4):1116-27. PubMed ID: 11359877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species differences in functions of dopamine transporter: paucity of MPP+ uptake and cocaine binding in bovine dopamine transporter.
    Lee SH; Rhee J; Koh JK; Lee YS
    Neurosci Lett; 1996 Aug; 214(2-3):199-201. PubMed ID: 8878118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human dopamine transporter forms a tetramer in the plasma membrane: cross-linking of a cysteine in the fourth transmembrane segment is sensitive to cocaine analogs.
    Hastrup H; Sen N; Javitch JA
    J Biol Chem; 2003 Nov; 278(46):45045-8. PubMed ID: 14519759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for distinct sodium-, dopamine-, and cocaine-dependent conformational changes in transmembrane segments 7 and 8 of the dopamine transporter.
    Norregaard L; Loland CJ; Gether U
    J Biol Chem; 2003 Aug; 278(33):30587-96. PubMed ID: 12773538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine transporter mutants with cocaine resistance and normal dopamine uptake provide targets for cocaine antagonism.
    Lin Z; Uhl GR
    Mol Pharmacol; 2002 Apr; 61(4):885-91. PubMed ID: 11901228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline mutations induce negative-dosage effects on uptake velocity of the dopamine transporter.
    Lin Z; Uhl GR
    J Neurochem; 2005 Jul; 94(1):276-87. PubMed ID: 15953370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis.
    Mitchell SM; Lee E; Garcia ML; Stephan MM
    J Biol Chem; 2004 Jun; 279(23):24089-99. PubMed ID: 15140876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.