These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7861249)

  • 1. Closed-loop control of carbon dioxide concentration and pressure improves response of room respiration calorimeters.
    Moon JK; Vohra FA; Valerio Jimenez OS; Puyau MR; Butte NF
    J Nutr; 1995 Feb; 125(2):220-8. PubMed ID: 7861249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-loop control of air supply to whole-room indirect calorimeters to improve accuracy and standardize measurements during 24-hour dynamic metabolic studies.
    Piaggi P; Rodzevik TL; Wohlers E; Ruud K; Moon J; Krakoff J; Chang DC
    Obesity (Silver Spring); 2023 Mar; 31(3):780-788. PubMed ID: 36788466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure.
    Sun M; Reed GW; Hill JO
    J Appl Physiol (1985); 1994 Jun; 76(6):2686-91. PubMed ID: 7928901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity and reliability of a new portable telemetric calorimeter designed to measure oxygen consumption and carbon dioxide production.
    De Lorenzo A; Sorge RP; Bertini I; Andreoli A; lacopino L; Di Daniele N; Perriello G
    Diabetes Nutr Metab; 2001 Oct; 14(5):268-76. PubMed ID: 11806467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration method for small animal indirect calorimeters.
    MacKay SJ; Loiseau A; Poivre R; Huot A
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E661-4. PubMed ID: 1951693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry.
    Treuth MS; Adolph AL; Butte NF
    Am J Physiol; 1998 Jul; 275(1):E12-8. PubMed ID: 9688868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performance of a variable-flow indirect calorimeter.
    Nicholson MJ; Holton J; Bradley AP; Beatty PC; Campbell IT
    Physiol Meas; 1996 Feb; 17(1):43-55. PubMed ID: 8746376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of the VO2000 calorimeter for measuring resting metabolic rate.
    Wahrlich V; Anjos LA; Going SB; Lohman TG
    Clin Nutr; 2006 Aug; 25(4):687-92. PubMed ID: 16698140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two systems of measuring energy expenditure.
    Stewart CL; Goody CM; Branson R
    JPEN J Parenter Enteral Nutr; 2005; 29(3):212-7. PubMed ID: 15837782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect calorimetry: technical aspects.
    Matarese LE
    J Am Diet Assoc; 1997 Oct; 97(10 Suppl 2):S154-60. PubMed ID: 9336580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of whole room indirect calorimeters: refinement of current methodologies.
    Rising R; Foerster T; Arad AD; Albu J; Pi-Sunyer X
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronous direct gradient layer and indirect room calorimetry.
    Seale JL; Rumpler WV
    J Appl Physiol (1985); 1997 Nov; 83(5):1775-81. PubMed ID: 9375351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients.
    Rehal MS; Fiskaare E; Tjäder I; Norberg Å; Rooyackers O; Wernerman J
    Crit Care; 2016 Mar; 20():54. PubMed ID: 26951095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect calorimetry methods for determination of energy expenditure.
    Dárdai E
    Acta Chir Hung; 1990; 31(1):47-61. PubMed ID: 2122623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three indirect calorimetry devices and three methods of gas collection: a prospective observational study.
    Graf S; Karsegard VL; Viatte V; Maisonneuve N; Pichard C; Genton L
    Clin Nutr; 2013 Dec; 32(6):1067-72. PubMed ID: 24064252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the accuracy of instantaneous gas exchange rates, energy expenditure and respiratory quotient calculations obtained from indirect whole room calorimetry.
    Gribok A; Hoyt R; Buller M; Rumpler W
    Physiol Meas; 2013 Jun; 34(6):737-55. PubMed ID: 23719329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A validation and comparison study of two metabolic monitors.
    Phang PT; Rich T; Ronco J
    JPEN J Parenter Enteral Nutr; 1990; 14(3):259-61. PubMed ID: 2112638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast-response whole body indirect calorimeters for infants.
    Moon JK; Jensen CL; Butte NF
    J Appl Physiol (1985); 1993 Jan; 74(1):476-84. PubMed ID: 8444731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithm to improve accuracy of energy expended in a room calorimeter.
    Quan H; Hao W; Li L; Sun M; Zhang K
    Med Biol Eng Comput; 2017 Aug; 55(8):1215-1225. PubMed ID: 27766518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.