These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7861249)

  • 21. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants.
    Dechert RE; Wesley JR; Schafer LE; LaMond S; Nicks J; Coran AG; Bartlett RH
    JPEN J Parenter Enteral Nutr; 1988; 12(3):256-9. PubMed ID: 3134559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classical experiments in whole-body metabolism: open-circuit respirometry-diluted flow chamber, hood, or facemask systems.
    Schoffelen PFM; Plasqui G
    Eur J Appl Physiol; 2018 Jan; 118(1):33-49. PubMed ID: 29080000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computer-controlled indirect calorimeter for the measurement of energy expenditure in one or two subjects simultaneously.
    Garrow JS; Webster JD
    Hum Nutr Clin Nutr; 1986 Jul; 40(4):315-21. PubMed ID: 3744892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.
    Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM
    Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of accuracy and precision of heart rate calibration methods to estimate total carbon dioxide production during 13C-breath tests.
    Slater C; Preston T; Weaver LT
    Eur J Clin Nutr; 2006 Jan; 60(1):69-76. PubMed ID: 16151459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of different methods on basal metabolic rate measurements in human subjects.
    Soares MJ; Sheela ML; Kurpad AV; Kulkarni RN; Shetty PS
    Am J Clin Nutr; 1989 Oct; 50(4):731-6. PubMed ID: 2508459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An in vitro evaluation of an instrument designed to measure oxygen consumption and carbon dioxide production during mechanical ventilation.
    Weissman C; Sardar A; Kemper M
    Crit Care Med; 1994 Dec; 22(12):1995-200. PubMed ID: 7988139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.
    Kim DY; Robergs RA
    Appl Physiol Nutr Metab; 2012 Feb; 37(1):157-66. PubMed ID: 22300357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A self-correcting indirect calorimeter system for the measurement of energy balance in small animals.
    Jensen DR; Gayles EC; Ammon S; Phillips R; Eckel RH
    J Appl Physiol (1985); 2001 Mar; 90(3):912-8. PubMed ID: 11181600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A whole body transportable indirect calorimeter for human use in the tropics.
    Charbonnier A; Jones CD; Schutz Y; Murgatroyd PR; Whitehead RG; Jéquier E; Spinnler G
    Eur J Clin Nutr; 1990 Oct; 44(10):725-31. PubMed ID: 2269251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Comparison of Carbon Dioxide Elimination Measurements Between a Portable Indirect Calorimeter and Volumetric Capnography Monitor: An In Vitro Simulation.
    Smallwood CD; Martinez EE; Mehta NM
    Respir Care; 2016 Mar; 61(3):354-8. PubMed ID: 26715770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A continuous analyzer for monitoring respiratory gases and expired radioactivity in clinical studies.
    Long CL; Carlo MA; Schaffel N; Schiller WS; Blakemore WS; Spencer JL; Broell JR
    Metabolism; 1979 Apr; 28(4):320-32. PubMed ID: 449684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined heart rate and activity improve estimates of oxygen consumption and carbon dioxide production rates.
    Moon JK; Butte NF
    J Appl Physiol (1985); 1996 Oct; 81(4):1754-61. PubMed ID: 8904596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals.
    Arch JR; Hislop D; Wang SJ; Speakman JR
    Int J Obes (Lond); 2006 Sep; 30(9):1322-31. PubMed ID: 16801931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of oxygen consumption measurements during artificial ventilation.
    Nunn JF; Makita K; Royston B
    J Appl Physiol (1985); 1989 Nov; 67(5):2129-34. PubMed ID: 2600040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro evaluation of a compact metabolic measurement instrument.
    Weissman C; Sardar A; Kemper M
    JPEN J Parenter Enteral Nutr; 1990; 14(2):216-21. PubMed ID: 2112632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and validation of an automatic metabolic monitor.
    Feenstra BW; Holland WP; van Lanschot JJ; Bruining HA
    Intensive Care Med; 1985; 11(2):95-9. PubMed ID: 3921584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Snellen human calorimeter revisited, re-engineered and upgraded: design and performance characteristics.
    Reardon FD; Leppik KE; Wegmann R; Webb P; Ducharme MB; Kenny GP
    Med Biol Eng Comput; 2006 Aug; 44(8):721-8. PubMed ID: 16937214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon dioxide accumulation, walking performance, and metabolic cost in the NASA launch and entry suit.
    Bishop PA; Lee SM; Conza NE; Clapp LL; Moore AD; Williams WJ; Guilliams ME; Greenisen MC
    Aviat Space Environ Med; 1999 Jul; 70(7):656-65. PubMed ID: 10417001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.