These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 786162)

  • 41. [Contribution of protein conformation to stereochemistry and reactivity of the active center of heme proteins and enzymes. The existence of horseradish peroxidase conformations and their possible role in the catalysis mechanism].
    Sharonov IuA; Pis'menskiĭ VF; Iarmola EG
    Mol Biol (Mosk); 1988; 22(6):1491-506. PubMed ID: 3252148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of dehydroalanine residues during thyroid hormone synthesis in thyroglobulin.
    Gavaret JM; Nunez J; Cahnmann HJ
    J Biol Chem; 1980 Jun; 255(11):5281-5. PubMed ID: 7372636
    [No Abstract]   [Full Text] [Related]  

  • 43. The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions.
    Bakkenist AR; de Boer JE; Plat H; Wever R
    Biochim Biophys Acta; 1980 Jun; 613(2):337-48. PubMed ID: 6255998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chloroperoxidase-catalyzed halogenation of antipyrine, a drug substrate of liver microsomal cytochrome P-450.
    Ashley PL; Griffin BW
    Arch Biochem Biophys; 1981 Aug; 210(1):167-78. PubMed ID: 7294825
    [No Abstract]   [Full Text] [Related]  

  • 45. The role of iodide and of free diiodotyrosine in enzymatic and non-enzymatic thyroid hormone synthesis.
    Virion A; Deme D; Pommier J; Nunez J
    Eur J Biochem; 1981 Aug; 118(2):239-45. PubMed ID: 7285920
    [No Abstract]   [Full Text] [Related]  

  • 46. Biological halogenation: roles in nature, potential in industry.
    Neidleman SL; Geigert J
    Endeavour; 1987; 11(1):5-15. PubMed ID: 2436889
    [No Abstract]   [Full Text] [Related]  

  • 47. Autocatalytic modification of the prosthetic heme of horseradish but not lactoperoxidase by thiocyanate oxidation products. A role for heme-protein covalent cross-linking.
    Wojciechowski G; Huang L; Ortiz de Montellano PR
    J Am Chem Soc; 2005 Nov; 127(45):15871-9. PubMed ID: 16277530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bromine derivatives of amino acids as intermediates in the peroxidase-catalyzed formation of singlet oxygen.
    Kanofsky JR
    Arch Biochem Biophys; 1989 Oct; 274(1):229-34. PubMed ID: 2774574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NADPH oxidation catalyzed by the peroxidase/H2O2 system. Iodide-mediated oxidation of NADPH to iodinated NADP.
    Virion A; Michot JL; Deme D; Pommier J
    Eur J Biochem; 1985 Apr; 148(2):239-43. PubMed ID: 3987687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism-based inactivation of lactoperoxidase and thyroid peroxidase by resorcinol derivatives.
    Divi RL; Doerge DR
    Biochemistry; 1994 Aug; 33(32):9668-74. PubMed ID: 8068644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of different (pseudo)halide substrates on peroxidase-mediated killing of Actinobacillus actinomycetemcomitans.
    Ihalin R; Loimaranta V; Lenander-Lumikari M; Tenovuo J
    J Periodontal Res; 1998 Oct; 33(7):421-7. PubMed ID: 9842507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral and kinetic studies on the formation of eosinophil peroxidase compound I and its reaction with halides and thiocyanate.
    Furtmüller PG; Burner U; Regelsberger G; Obinger C
    Biochemistry; 2000 Dec; 39(50):15578-84. PubMed ID: 11112545
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxygenation of organosulfur compounds by peroxidases: evidence of an electron transfer mechanism for lactoperoxidase.
    Doerge DR
    Arch Biochem Biophys; 1986 Feb; 244(2):678-85. PubMed ID: 3947087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inactivation of peroxidase and glucose oxidase by H2O2 and iodide during in vitro thyroglobulin iodination.
    Wildberger E; Kohler H; Jenzer H; Kämpf J; Studer H
    Mol Cell Endocrinol; 1986 Jul; 46(2):149-54. PubMed ID: 3013706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Affinity chromatography of thyroid peroxidase using tyrosine coupled to Agarose.
    Yamamoto K; Degroot LJ
    J Biochem; 1982 Mar; 91(3):775-82. PubMed ID: 7076648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iodination of zeta protein by lactoperoxidase. Chloroperoxidase and chloramine T.
    Jone C; Hager LP
    Biochem Biophys Res Commun; 1976 Jan; 68(1):16-20. PubMed ID: 174562
    [No Abstract]   [Full Text] [Related]  

  • 57. Dissociation of thyroglobulin iodination and hormone synthesis catalyzed by peroxidases.
    Virion A; Pommier J; Nunez J
    Eur J Biochem; 1979 Dec; 102(2):549-54. PubMed ID: 43250
    [No Abstract]   [Full Text] [Related]  

  • 58. Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate.
    Furtmüller PG; Burner U; Obinger C
    Biochemistry; 1998 Dec; 37(51):17923-30. PubMed ID: 9922160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macromolecular binding of the thyroid carcinogen 3-amino-1,2,4-triazole (amitrole) catalyzed by prostaglandin H synthase, lactoperoxidase and thyroid peroxidase.
    Krauss RS; Eling TE
    Carcinogenesis; 1987 May; 8(5):659-64. PubMed ID: 3107850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chloroperoxidase-catalysed oxidation of 4-chloroaniline to 4-chloronitrosobenze.
    Corbett MD; Chipko BR; Baden DG
    Biochem J; 1978 Nov; 175(2):353-60. PubMed ID: 743200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.