BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 7862083)

  • 21. Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of the phytochrome-deficient aurea mutant of tomato by blue/UV-A- or by UV-B-light.
    Migge A; Carrayol E; Hirel B; Lohmann M; Meya G; Becker TW
    Plant Mol Biol; 1998 Jul; 37(4):689-700. PubMed ID: 9687072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions).
    Johnson E; Bradley M; Harberd NP; Whitelam GC
    Plant Physiol; 1994 May; 105(1):141-149. PubMed ID: 12232194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time.
    Devlin PF; Halliday KJ; Harberd NP; Whitelam GC
    Plant J; 1996 Dec; 10(6):1127-34. PubMed ID: 9011093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2.
    Weller JL; Perrotta G; Schreuder ME; van Tuinen A; Koornneef M; Giuliano G; Kendrick RE
    Plant J; 2001 Feb; 25(4):427-40. PubMed ID: 11260499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High pigment1 mutation negatively regulates phototropic signal transduction in tomato seedlings.
    Srinivas A; Behera RK; Kagawa T; Wada M; Sharma R
    Plant Physiol; 2004 Feb; 134(2):790-800. PubMed ID: 14739347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light exaggerates apical hook curvature through phytochrome actions in tomato seedlings.
    Shichijo C; Ohuchi H; Iwata N; Nagatoshi Y; Takahashi M; Nakatani E; Inoue K; Tsurumi S; Tanaka O; Hashimoto T
    Planta; 2010 Feb; 231(3):665-75. PubMed ID: 20012088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses.
    Büche C; Poppe C; Schäfer E; Kretsch T
    Plant Cell; 2000 Apr; 12(4):547-58. PubMed ID: 10760243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red light.
    Sineshchekov V; Belyaeva O; Sudnitsin A
    J Photochem Photobiol B; 2004 Mar; 74(1):47-54. PubMed ID: 15043846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytochrome A and phytochrome B1 control the acquisition of competence for shoot regeneration in tomato hypocotyl.
    Bertram L; Lercari B
    Plant Cell Rep; 2000 May; 19(6):604-609. PubMed ID: 30754824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling of phytochrome B to the control of hypocotyl growth in Arabidopsis.
    Casal JJ
    Planta; 1995; 196(1):23-9. PubMed ID: 7767236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
    Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U
    Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-fluence red light increases the transport and biosynthesis of auxin.
    Liu X; Cohen JD; Gardner G
    Plant Physiol; 2011 Oct; 157(2):891-904. PubMed ID: 21807888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytochrome E controls light-induced germination of Arabidopsis.
    Hennig L; Stoddart WM; Dieterle M; Whitelam GC; Schäfer E
    Plant Physiol; 2002 Jan; 128(1):194-200. PubMed ID: 11788765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. fhy3-1 retains inductive responses of phytochrome A.
    Yanovsky MJ; Whitelam GC; Casal JJ
    Plant Physiol; 2000 May; 123(1):235-42. PubMed ID: 10806240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytochrome B1-dependent control of SP5G transcription is the basis of the night break and red to far-red light ratio effects in tomato flowering.
    Cao K; Yan F; Xu D; Ai K; Yu J; Bao E; Zou Z
    BMC Plant Biol; 2018 Aug; 18(1):158. PubMed ID: 30081827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytochrome-mediated phototropism in de-etiolated seedlings : occurrence and ecological significance.
    Ballaré CL; Scopel AL; Radosevich SR; Kendrick RE
    Plant Physiol; 1992 Sep; 100(1):170-7. PubMed ID: 16652942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh.
    Bagnall DJ; King RW; Whitelam GC; Boylan MT; Wagner D; Quail PH
    Plant Physiol; 1995 Aug; 108(4):1495-503. PubMed ID: 7659750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light-grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth inhibition by far-red light.
    McCormac A; Whitelam G; Smith H
    Planta; 1992 Sep; 188(2):173-81. PubMed ID: 24178253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of functional oat phytochrome A in transgenic rice.
    Clough RC; Casal JJ; Jordan ET; Christou P; Vierstra RD
    Plant Physiol; 1995 Nov; 109(3):1039-45. PubMed ID: 8552709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis.
    Shinomura T; Uchida K; Furuya M
    Plant Physiol; 2000 Jan; 122(1):147-56. PubMed ID: 10631258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.