BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7862139)

  • 1. TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts.
    Gerlach VL; Whitehall SK; Geiduschek EP; Brow DA
    Mol Cell Biol; 1995 Mar; 15(3):1455-66. PubMed ID: 7862139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and structural organization of Brf, the TFIIB-related component of the RNA polymerase III transcription initiation complex.
    Kassavetis GA; Kumar A; Ramirez E; Geiduschek EP
    Mol Cell Biol; 1998 Sep; 18(9):5587-99. PubMed ID: 9710642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae.
    Soragni E; Kassavetis GA
    J Biol Chem; 2008 Sep; 283(39):26568-76. PubMed ID: 18667429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of DNA strand breaks on transcription by RNA polymerase III: insights into the role of TFIIIB and the polarity of promoter opening.
    Kassavetis GA; Grove A; Geiduschek EP
    EMBO J; 2002 Oct; 21(20):5508-15. PubMed ID: 12374751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein.
    Ghavidel A; Schultz MC
    Genes Dev; 1997 Nov; 11(21):2780-9. PubMed ID: 9353248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation.
    Talyzina A; Han Y; Banerjee C; Fishbain S; Reyes A; Vafabakhsh R; He Y
    Mol Cell; 2023 Aug; 83(15):2641-2652.e7. PubMed ID: 37402369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin structure and expression of a gene transcribed by RNA polymerase III are independent of H2A.Z deposition.
    Arimbasseri AG; Bhargava P
    Mol Cell Biol; 2008 Apr; 28(8):2598-607. PubMed ID: 18268003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity.
    Hsieh YJ; Kundu TK; Wang Z; Kovelman R; Roeder RG
    Mol Cell Biol; 1999 Nov; 19(11):7697-704. PubMed ID: 10523658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications.
    Marck C; Kachouri-Lafond R; Lafontaine I; Westhof E; Dujon B; Grosjean H
    Nucleic Acids Res; 2006; 34(6):1816-35. PubMed ID: 16600899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity.
    Kundu TK; Wang Z; Roeder RG
    Mol Cell Biol; 1999 Feb; 19(2):1605-15. PubMed ID: 9891093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chimeric subunit of yeast transcription factor IIIC forms a subcomplex with tau95.
    Manaud N; Arrebola R; Buffin-Meyer B; Lefebvre O; Voss H; Riva M; Conesa C; Sentenac A
    Mol Cell Biol; 1998 Jun; 18(6):3191-200. PubMed ID: 9584160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into human TFIIIC promoter recognition.
    Seifert-Davila W; Girbig M; Hauptmann L; Hoffmann T; Eustermann S; Müller CW
    Sci Adv; 2023 Jul; 9(27):eadh2019. PubMed ID: 37418517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors.
    Ferrari R; Dieci G
    Cell Mol Biol Lett; 2008; 13(1):112-8. PubMed ID: 17965971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites.
    Mondragón-Rosas F; Florencio-Martínez LE; Villa-Delavequia GS; Manning-Cela RG; Carrero JC; Nepomuceno-Mejía T; Martínez-Calvillo S
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):109. PubMed ID: 38204130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fifth essential DNA polymerase phi in Saccharomyces cerevisiae is localized to the nucleolus and plays an important role in synthesis of rRNA.
    Shimizu K; Kawasaki Y; Hiraga S; Tawaramoto M; Nakashima N; Sugino A
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9133-8. PubMed ID: 12093911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of U6 snRNA Transcription by PTEN.
    Cabarcas S; Watabe K; Schramm L
    Online J Biol Sci; 2010 Sep; 10(3):114-125. PubMed ID: 21479160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marking the start site of RNA polymerase III transcription: the role of constraint, compaction and continuity of the transcribed DNA strand.
    Grove A; Adessa MS; Geiduschek EP; Kassavetis GA
    EMBO J; 2002 Feb; 21(4):704-14. PubMed ID: 11847118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast U6 snRNA made by RNA polymerase II is less stable but functional.
    Lipinski KA; Chi J; Chen X; Hoskins AA; Brow DA
    RNA; 2022 Dec; 28(12):1606-1620. PubMed ID: 36195346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Features of the Nucleosomal DNA Modulate the Functional Binding of a Transcription Factor and Productive Transcription.
    Vinayachandran V; Bhargava P
    Front Genet; 2022; 13():870700. PubMed ID: 35646068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes.
    Abascal-Palacios G; Jochem L; Pla-Prats C; Beuron F; Vannini A
    Nat Commun; 2021 Nov; 12(1):6992. PubMed ID: 34848735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.