These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7862482)
21. Heterogeneity of white matter hyperintensities in Alzheimer's disease: post-mortem quantitative MRI and neuropathology. Gouw AA; Seewann A; Vrenken H; van der Flier WM; Rozemuller JM; Barkhof F; Scheltens P; Geurts JJ Brain; 2008 Dec; 131(Pt 12):3286-98. PubMed ID: 18927145 [TBL] [Abstract][Full Text] [Related]
22. Quality of general movements is related to white matter pathology in very preterm infants. Spittle AJ; Brown NC; Doyle LW; Boyd RN; Hunt RW; Bear M; Inder TE Pediatrics; 2008 May; 121(5):e1184-9. PubMed ID: 18390959 [TBL] [Abstract][Full Text] [Related]
23. Taylor-type focal cortical dysplasia in infants: some MRI lesions almost disappear with maturation of myelination. Eltze CM; Chong WK; Bhate S; Harding B; Neville BG; Cross JH Epilepsia; 2005 Dec; 46(12):1988-92. PubMed ID: 16393166 [TBL] [Abstract][Full Text] [Related]
24. Detection of human herpesvirus-6, Epstein-Barr virus and cytomegalovirus in formalin-fixed tissues from sudden infant death: a study with quantitative real-time PCR. Alvarez-Lafuente R; Aguilera B; Suárez-Mier MA; Morentin B; Vallejo G; Gómez J; Fernández-Rodríguez A Forensic Sci Int; 2008 Jul; 178(2-3):106-11. PubMed ID: 18424026 [TBL] [Abstract][Full Text] [Related]
25. Brain stem gliosis in the victims of sudden infant death syndrome (SIDS): a sign of retarded maturation? Kelmanson IA Zentralbl Pathol; 1995 Apr; 140(6):449-52. PubMed ID: 7756248 [TBL] [Abstract][Full Text] [Related]
26. Immunohistochemical classification of astrocytes in infants by glial fibrillary acidic protein staining and application to forensic practice. Zhang WD; Tsukamoto T; Yamada Y; Itakura Y; Oono T; Nagao M; Takatori T Nihon Hoigaku Zasshi; 1992 Jun; 46(3):189-97. PubMed ID: 1383583 [TBL] [Abstract][Full Text] [Related]
27. Delayed central nervous system myelination in the sudden infant death syndrome. Kinney HC; Brody BA; Finkelstein DM; Vawter GF; Mandell F; Gilles FH J Neuropathol Exp Neurol; 1991 Jan; 50(1):29-48. PubMed ID: 1985152 [TBL] [Abstract][Full Text] [Related]
28. Brain weight-body weight ratio in sudden infant death syndrome revisited. Elliott JA; Vink R; Jensen L; Byard RW Med Sci Law; 2012 Oct; 52(4):207-9. PubMed ID: 22619376 [TBL] [Abstract][Full Text] [Related]
29. Magnetic resonance imaging in infantile encephalopathy with cerebral calcification and leukodystrophy. Boltshauser E; Steinlin M; Boesch C; Martin E; Schubiger G Neuropediatrics; 1991 Feb; 22(1):33-5. PubMed ID: 2038425 [TBL] [Abstract][Full Text] [Related]
30. Regional white matter development in children with autism spectrum disorders. Carmody DP; Lewis M Dev Psychobiol; 2010 Dec; 52(8):755-63. PubMed ID: 20564327 [TBL] [Abstract][Full Text] [Related]
31. Phrenic nerves and diaphragms in sudden infant death syndrome. Weis J; Weber U; Schröder JM; Lemke R; Althoff H Forensic Sci Int; 1998 Jan; 91(2):133-46. PubMed ID: 9549903 [TBL] [Abstract][Full Text] [Related]
32. Neuronal development in the medullary reticular formation in sudden infant death syndrome and premature infants. Takashima S; Mito T; Becker LE Neuropediatrics; 1985 May; 16(2):76-9. PubMed ID: 4010894 [TBL] [Abstract][Full Text] [Related]
33. Myelin development in infant brain. Poduslo SE; Jang Y Neurochem Res; 1984 Nov; 9(11):1615-26. PubMed ID: 6521822 [TBL] [Abstract][Full Text] [Related]
34. Phrenic nerve maturation in the sudden infant death syndrome. Pamphlett R; Murray N; Louda C Acta Neuropathol; 1996; 91(4):422-6. PubMed ID: 8928620 [TBL] [Abstract][Full Text] [Related]
35. Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS). Studer J; Bartsch C; Haas C Pediatr Res; 2014 Jul; 76(1):41-5. PubMed ID: 24727946 [TBL] [Abstract][Full Text] [Related]
36. No changes in cerebellar microvessel length density in sudden infant death syndrome: implications for pathogenetic mechanisms. Müller-Starck J; Büttner A; Kiessling MC; Angstman NB; Császár NB; Haeussner E; Hochstrasser T; Sternecker K; Hof PR; Milz S; Frank HG; Schmitz C J Neuropathol Exp Neurol; 2014 Apr; 73(4):312-23. PubMed ID: 24607967 [TBL] [Abstract][Full Text] [Related]
37. MR evaluation of early myelination patterns in normal and developmentally delayed infants. Dietrich RB; Bradley WG; Zaragoza EJ; Otto RJ; Taira RK; Wilson GH; Kangarloo H AJR Am J Roentgenol; 1988 Apr; 150(4):889-96. PubMed ID: 2450448 [TBL] [Abstract][Full Text] [Related]
38. Cerebral magnetic resonance imaging (MRI) of very low birth weight infants at one year of corrected age. Skranes JS; Nilsen G; Smevik O; Vik T; Rinck P; Brubakk AM Pediatr Radiol; 1992; 22(6):406-9. PubMed ID: 1437361 [TBL] [Abstract][Full Text] [Related]
39. Role of MRI in patient selection for surgical treatment of intractable epilepsy in infancy. Daghistani R; Widjaja E Brain Dev; 2013 Sep; 35(8):697-705. PubMed ID: 23632127 [TBL] [Abstract][Full Text] [Related]
40. Review: Neuropathological features of unexplained sudden unexpected death in infancy: current evidence and controversies. Paine SM; Jacques TS; Sebire NJ Neuropathol Appl Neurobiol; 2014 Jun; 40(4):364-84. PubMed ID: 24131039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]