These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7862644)

  • 81. Directed hydroxyl radical probing using iron(II) tethered to RNA.
    Joseph S; Noller HF
    Methods Enzymol; 2000; 318():175-90. PubMed ID: 10889988
    [No Abstract]   [Full Text] [Related]  

  • 82. Another piece of the ribosome: solution structure of S16 and its location in the 30S subunit.
    Allard P; Rak AV; Wimberly BT; Clemons WM; Kalinin A; Helgstrand M; Garber MB; Ramakrishnan V; Härd T
    Structure; 2000 Aug; 8(8):875-82. PubMed ID: 10997906
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation.
    Adilakshmi T; Lease RA; Woodson SA
    Nucleic Acids Res; 2006 May; 34(8):e64. PubMed ID: 16682443
    [TBL] [Abstract][Full Text] [Related]  

  • 84. In vitro reconstitution of 30S ribosomal subunits using complete set of recombinant proteins.
    Culver GM; Noller HF
    Methods Enzymol; 2000; 318():446-60. PubMed ID: 10890005
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Identification of Novel RNA-Protein Contact in Complex of Ribosomal Protein S7 and 3'-Terminal Fragment of 16S rRNA in E. coli.
    Golovin AV; Khayrullina GA; Kraal B; Kopylov CA
    Acta Naturae; 2012 Oct; 4(4):65-72. PubMed ID: 23346381
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose.
    Rozier C; Mache R
    Nucleic Acids Res; 1984 Oct; 12(19):7293-304. PubMed ID: 16617474
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA.
    Hori N; Denesyuk NA; Thirumalai D
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33658370
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Hydrogen bonding and packing density are factors most strongly connected to limiting sites of high flexibility in the 16S rRNA in the 30S ribosome.
    Huggins W; Ghosh SK; Wollenzien P
    BMC Struct Biol; 2009 Jul; 9():49. PubMed ID: 19643000
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Massive parallel-sequencing-based hydroxyl radical probing of RNA accessibility.
    Kielpinski LJ; Vinther J
    Nucleic Acids Res; 2014 Apr; 42(8):e70. PubMed ID: 24569351
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mapping protein-protein interactions by localized oxidation: consequences of the reach of hydroxyl radical.
    Cheal SM; Ng M; Barrios B; Miao Z; Kalani AK; Meares CF
    Biochemistry; 2009 Jun; 48(21):4577-86. PubMed ID: 19354299
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Assembly of the five-way junction in the ribosomal small subunit using hybrid MD-Gō simulations.
    Chen K; Eargle J; Lai J; Kim H; Abeysirigunawardena S; Mayerle M; Woodson S; Ha T; Luthey-Schulten Z
    J Phys Chem B; 2012 Jun; 116(23):6819-31. PubMed ID: 22458631
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Identifying protein interactions by hydroxyl-radical protein footprinting.
    Loizos N
    Curr Protoc Protein Sci; 2004 Nov; Chapter 19():19.9.1-19.9.11. PubMed ID: 18429254
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Hydroxyl-radical footprinting.
    Carey M; Smale ST
    CSH Protoc; 2007 Dec; 2007():pdb.prot4810. PubMed ID: 21356993
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Molecular interactions of ribosomal components. IV: Cooperative interactions during assembly in vitro.
    Green M; Kurland CG
    Mol Biol Rep; 1973 Aug; 1(2):105-11. PubMed ID: 24197474
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The organization of RNA contacts by PTB for regulation of FAS splicing.
    Mickleburgh I; Kafasla P; Cherny D; Llorian M; Curry S; Jackson RJ; Smith CW
    Nucleic Acids Res; 2014 Jul; 42(13):8605-20. PubMed ID: 24957602
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A conserved motif in Tetrahymena thermophila telomerase reverse transcriptase is proximal to the RNA template and is essential for boundary definition.
    Akiyama BM; Gomez A; Stone MD
    J Biol Chem; 2013 Jul; 288(30):22141-9. PubMed ID: 23760279
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Dual posttranscriptional regulation via a cofactor-responsive mRNA leader.
    Patterson-Fortin LM; Vakulskas CA; Yakhnin H; Babitzke P; Romeo T
    J Mol Biol; 2013 Oct; 425(19):3662-77. PubMed ID: 23274138
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Sharing and archiving nucleic acid structure mapping data.
    Rocca-Serra P; Bellaousov S; Birmingham A; Chen C; Cordero P; Das R; Davis-Neulander L; Duncan CD; Halvorsen M; Knight R; Leontis NB; Mathews DH; Ritz J; Stombaugh J; Weeks KM; Zirbel CL; Laederach A
    RNA; 2011 Jul; 17(7):1204-12. PubMed ID: 21610212
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A complex assembly landscape for the 30S ribosomal subunit.
    Sykes MT; Williamson JR
    Annu Rev Biophys; 2009; 38():197-215. PubMed ID: 19416066
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Synthesis of the unnatural amino acid N-N-(ferrocene-1-acetyl)-l-lysine: a novel organometallic nuclease.
    Gellett AM; Huber PW; Higgins PJ
    J Organomet Chem; 2008 Sep; 693(18):2959-2962. PubMed ID: 19255618
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.