These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7862741)

  • 1. Effect of anesthetic and convulsant barbiturates on N-methyl-D-aspartate receptor-mediated calcium flux in brain membrane vesicles.
    Daniell LC
    Pharmacology; 1994 Nov; 49(5):296-307. PubMed ID: 7862741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anesthetic and convulsant barbiturates alter gamma-aminobutyric acid-stimulated chloride flux across brain membranes.
    Allan AM; Harris RA
    J Pharmacol Exp Ther; 1986 Sep; 238(3):763-8. PubMed ID: 2427687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of barbiturates with benzodiazepine receptors in the central nervous system.
    Skolnick P; Rice KC; Barker JL; Paul SM
    Brain Res; 1982 Feb; 233(1):143-56. PubMed ID: 6277423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depressant and convulsant barbiturates both inhibit neuronal nicotinic acetylcholine receptors.
    Watanabe I; Andoh T; Furuya R; Sasaki T; Kamiya Y; Itoh H
    Anesth Analg; 1999 Jun; 88(6):1406-11. PubMed ID: 10357353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the in vivo effects of convulsant and optically active hypnotic barbiturates with their effects on the in vitro K+-stimulated release of [3H]acetylcholine.
    Holtman JR; Richter JA
    Biochem Pharmacol; 1981 Sep; 30(18):2619-21. PubMed ID: 6118154
    [No Abstract]   [Full Text] [Related]  

  • 6. The effects of anaesthetic and convulsant barbiturates on the efflux of [3H]D-aspartate from brain minislices.
    Willow M; Bornstein JC; Johnston GA
    Neurosci Lett; 1980 Jun; 18(2):185-90. PubMed ID: 7052490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in ethanol sensitivity of brain NMDA receptors of long-sleep and short-sleep mice.
    Daniell LC; Phillips TJ
    Alcohol Clin Exp Res; 1994 Dec; 18(6):1482-90. PubMed ID: 7695048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a sedative and a convulsant barbiturate on synaptosomal calcium transport.
    Harris RA; Stokes JA
    Brain Res; 1982 Jun; 242(1):157-63. PubMed ID: 6125246
    [No Abstract]   [Full Text] [Related]  

  • 9. Multiple actions of convulsant barbiturates on mouse neurons in cell culture.
    Skerritt JH; Macdonald RL
    J Pharmacol Exp Ther; 1984 Jul; 230(1):82-8. PubMed ID: 6747834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barbiturates induce mitochondrial depolarization and potentiate excitotoxic neuronal death.
    Anderson CM; Norquist BA; Vesce S; Nicholls DG; Soine WH; Duan S; Swanson RA
    J Neurosci; 2002 Nov; 22(21):9203-9. PubMed ID: 12417645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of volatile general anesthetics and n-alcohols on glutamate-stimulated increases in calcium ion flux in hippocampal membrane vesicles.
    Daniell LC
    Pharmacology; 1995 Mar; 50(3):154-61. PubMed ID: 7746832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-(2-Cyclohexylideneethyl)-5-ethyl barbituric acid (CHEB): correlation of hypnotic and convulsant properties with alterations of synaptosomal 45Ca2+ influx.
    Chandler LJ; Leslie SW; Gonzales R
    Eur J Pharmacol; 1986 Jul; 126(1-2):117-23. PubMed ID: 2875881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol, sedative hypnotics and glutamate receptor function in brain and cultured cells.
    Hoffman PL; Tabakoff B
    Alcohol Alcohol Suppl; 1993; 2():345-51. PubMed ID: 7748322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differing actions of convulsant and nonconvulsant barbiturates: an electrophysiological study in the isolated spinal cord of the rat.
    Nicholson GM; Spence I; Johnston GA
    Neuropharmacology; 1988 May; 27(5):459-65. PubMed ID: 3393268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol, sedative hypnotics, and glutamate receptor function in brain and cultured cells.
    Tabakoff B; Hoffman PL
    Behav Genet; 1993 Mar; 23(2):231-6. PubMed ID: 8390239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convulsant versus typical barbiturates: effects on locomotor activity.
    Darnell RJ; McCloskey TC; Commissaris RL
    Pharmacol Biochem Behav; 1986 Mar; 24(3):727-31. PubMed ID: 2871565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting actions of a convulsant barbiturate and its anticonvulsant enantiomer on the α1 β3 γ2L GABAA receptor account for their in vivo effects.
    Desai R; Savechenkov PY; Zolkowska D; Ge RL; Rogawski MA; Bruzik KS; Forman SA; Raines DE; Miller KW
    J Physiol; 2015 Nov; 593(22):4943-61. PubMed ID: 26378885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convulsant versus typical barbiturates: effects on conflict behavior in the rat.
    Commissaris RL; Vasas RJ; McCloskey TC
    Pharmacol Biochem Behav; 1988 Mar; 29(3):631-4. PubMed ID: 2896362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barbiturate activation and modulation of GABA(A) receptors in neocortex.
    Mathers DA; Wan X; Puil E
    Neuropharmacology; 2007 Mar; 52(4):1160-8. PubMed ID: 17289092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of general anesthetic potency by agonists and antagonists of the polyamine binding site of the N-methyl-D-aspartate receptor.
    Daniell LC
    J Pharmacol Exp Ther; 1992 Apr; 261(1):304-10. PubMed ID: 1532834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.