These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7862929)

  • 21. The NMDA positive modulator D-cycloserine potentiates the neuroleptic activity of D1 and D2 dopamine receptor blockers in the rat.
    Dall'Olio R; Gandolfi O
    Psychopharmacology (Berl); 1993; 110(1-2):165-8. PubMed ID: 7870878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopaminergic and cholinergic interaction in cataleptic responses in mice.
    Ushijima I; Kawano M; Kaneyuki H; Suetsugi M; Usami K; Hirano H; Mizuki Y; Yamada M
    Pharmacol Biochem Behav; 1997 Sep; 58(1):103-8. PubMed ID: 9264077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of dopamine receptor agonists on passive avoidance learning in mice: interaction of dopamine D1 and D2 receptors.
    Ichihara K; Nabeshima T; Kameyama T
    Eur J Pharmacol; 1992 Mar; 213(2):243-9. PubMed ID: 1355736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of cocaine sensitization by dopamine D1 and D2 receptor antagonists in terms of ambulation in mice.
    Kuribara H
    Pharmacol Biochem Behav; 1995 Aug; 51(4):799-805. PubMed ID: 7675862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of both dopamine D1 and D2 receptors necessary for amelioration of conditioned fear stress.
    Kamei H; Kameyama T; Nabeshima T
    Eur J Pharmacol; 1995 Feb; 273(3):229-33. PubMed ID: 7737329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impairment by apomorphine of one-trial passive avoidance learning in mice: the opposing roles of the dopamine and noradrenaline systems.
    Fernandez-Tome MP; Sanchez-Blazquez P; del Rio J
    Psychopharmacology (Berl); 1979 Mar; 61(1):43-7. PubMed ID: 35807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of haloperidol, sulpiride and SCH 23390 on passive avoidance learning in mice.
    Ichihara K; Nabeshima T; Kameyama T
    Eur J Pharmacol; 1988 Jul; 151(3):435-42. PubMed ID: 3063548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. D1 and D2 dopamine receptor antagonists reverse prepulse inhibition deficits in an animal model of schizophrenia.
    Hoffman DC; Donovan H
    Psychopharmacology (Berl); 1994 Aug; 115(4):447-53. PubMed ID: 7871088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of MK-801 response by dopaminergic agents in mice.
    Verma A; Kulkarni SK
    Psychopharmacology (Berl); 1992; 107(2-3):431-6. PubMed ID: 1352060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dopamine antagonists can inhibit methamphetamine sensitization, but not cocaine sensitization, when assessed by ambulatory activity in mice.
    Kuribara H; Uchihashi Y
    J Pharm Pharmacol; 1993 Dec; 45(12):1042-5. PubMed ID: 7908972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibiting effect of D1, but not D2 antagonist administered to the striatum on retention of passive avoidance in the chick.
    Kabai P; Stewart MG; Tarcali J; Csillag A
    Neurobiol Learn Mem; 2004 Mar; 81(2):155-8. PubMed ID: 14990236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of avoidance responding by amphetamine and dopamine receptor antagonists.
    Jakubowska-Doğru E
    Pol J Pharmacol; 1999; 51(4):301-9. PubMed ID: 10540961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repeated administrations of dopamine receptor agents affect lithium-induced state-dependent learning in mice.
    Zarrindast M; Madadi F; Ahmadi S
    J Psychopharmacol; 2009 Aug; 23(6):645-51. PubMed ID: 18635706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of D1 and D2 dopamine receptor stimulation on the activity of substantia nigra pars reticulata neurons in 6-hydroxydopamine lesioned rats: D1/D2 coactivation induces potentiated responses.
    Weick BG; Walters JR
    Brain Res; 1987 Mar; 405(2):234-46. PubMed ID: 2952219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opposite strain-dependent effects of post-training corticosterone in a passive avoidance task in mice: role of dopamine.
    Cabib S; Castellano C; Patacchioli FR; Cigliana G; Angelucci L; Puglisi-Allegra S
    Brain Res; 1996 Aug; 729(1):110-8. PubMed ID: 8874882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nicotine reverses scopolamine-induced impairment of performance in passive avoidance task in rats through its action on the dopaminergic neuronal system.
    Nitta A; Katono Y; Itoh A; Hasegawa T; Nabeshima T
    Pharmacol Biochem Behav; 1994 Dec; 49(4):807-12. PubMed ID: 7886091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ketamine affects memory consolidation: differential effects in T-maze and passive avoidance paradigms in mice.
    Wang JH; Fu Y; Wilson FA; Ma YY
    Neuroscience; 2006 Jul; 140(3):993-1002. PubMed ID: 16600517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopaminergic mechanisms in the conditioned and unconditioned fear as assessed by the two-way avoidance and light switch-off tests.
    Reis FL; Masson S; de Oliveira AR; Brandão ML
    Pharmacol Biochem Behav; 2004 Oct; 79(2):359-65. PubMed ID: 15501313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repeated histamine pretreatment decreased amnesia induced by post-training administration of the drug in a step-down inhibitory avoidance test in mice.
    Ahmadi S; Malekmohammadi N; Zarrindast MR
    Arch Iran Med; 2010 May; 13(3):209-16. PubMed ID: 20433225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of nicotine on memory retrieval in mice.
    Zarrindast MR; Sadegh M; Shafaghi B
    Eur J Pharmacol; 1996 Jan; 295(1):1-6. PubMed ID: 8925865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.