These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7863523)

  • 1. Quantitative structure activity relationships for skin corrosivity of organic acids, bases and phenols.
    Barratt MD
    Toxicol Lett; 1995 Jan; 75(1-3):169-76. PubMed ID: 7863523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationships (QSARs) for skin corrosivity of organic acids, bases and phenols: Principal components and neural network analysis of extended datasets.
    Barratt MD
    Toxicol In Vitro; 1996 Feb; 10(1):85-94. PubMed ID: 20650186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-Activity relationships for skin irritation and corrosivity of neutral and electrophilic organic chemicals.
    Barratt MD
    Toxicol In Vitro; 1996 Jun; 10(3):247-56. PubMed ID: 20650203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of in vitro cytotoxicity measurements in QSAR methods for the prediction of the skin corrosivity potential of acids.
    Barratt MD; Dixit MB; Jones PA
    Toxicol In Vitro; 1996 Jun; 10(3):283-90. PubMed ID: 20650207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative structure-activity relationship for the eye irritation potential of neutral organic chemicals.
    Barratt MD
    Toxicol Lett; 1995 Oct; 80(1-3):69-74. PubMed ID: 7482594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ECVAM Prevalidation Study on the Use of EpiDerm for Skin Corrosivity Testing.
    Liebsch M; Traue D; Barrabas C; Spielmann H; Uphill P; Wilkins S; McPherson JP; Wiemann C; Kaufmann T; Remmele M; Holzhütter HG
    Altern Lab Anim; 2000; 28(3):371-401. PubMed ID: 25419920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism-based quantitative structure-activity relationships for the inhibition of substituted phenols on germination rate of Cucumis sativus.
    Wang X; Yu J; Wang Y; Wang L
    Chemosphere; 2002 Jan; 46(2):241-50. PubMed ID: 11827281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structure-activity relationships of organic solvents and related chemicals].
    Tanii H
    Sangyo Igaku; 1994 Sep; 36(5):299-313. PubMed ID: 7967155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationships for mono alkylated or halogenated phenols.
    Schultz TW; Cajina-Quezada M
    Toxicol Lett; 1987 Jul; 37(2):121-30. PubMed ID: 3111016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ECVAM International Validation Study on In Vitro Tests for Skin Corrosivity. 1. Selection and Distribution of the Test Chemicals.
    Barratt MD; Brantom PG; Fentem JH; Gerner I; Walker AP; Worth AP
    Toxicol In Vitro; 1998 Aug; 12(4):471-82. PubMed ID: 20654430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of the ionization constant (pKa) in selecting models of toxicity in phenols.
    Schultz TW
    Ecotoxicol Environ Saf; 1987 Oct; 14(2):178-83. PubMed ID: 3121279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ECVAM International Validation Study on In Vitro Tests for Skin Corrosivity. 2. Results and Evaluation by the Management Team.
    Fentem JH; Archer GE; Balls M; Botham PA; Curren RD; Earl LK; Esdaile DJ; Holzhütter HG; Liebsch M
    Toxicol In Vitro; 1998 Aug; 12(4):483-524. PubMed ID: 20654431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSARs for monosubstituted phenols and the polar narcosis mechanism of toxicity.
    Schultz TW; Lin DT; Wesley SK
    Qual Assur; 1992 Feb; 1(2):132-43. PubMed ID: 1344212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative structure-Activity relationship study of the skin irritation potential of phenols.
    Hayashi M; Nakamura Y; Higashi K; Kato H; Kishida F; Kaneko H
    Toxicol In Vitro; 1999 Dec; 13(6):915-22. PubMed ID: 20654567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism-based quantitative structure-phytotoxicity relationships comparative inhibition of substituted phenols on root elongation of Cucumis sativus.
    Wang X; Wang Y; Chunsheng Y; Wang L; Han S
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):29-35. PubMed ID: 11706365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of toxicity using quantitative structure-activity relationships.
    Dura G; Krasovski GN; Zholdakova ZI; Mayer G
    Arch Toxicol Suppl; 1985; 8():481-7. PubMed ID: 3868379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative relationships of structure-activity and volume fraction for selected nonpolar and polar narcotic chemicals.
    Jaworska JS; Schultz TW
    SAR QSAR Environ Res; 1993; 1(1):3-19. PubMed ID: 8790624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of toxicity of phenols to Tetrahymena pyriformis and subsequent derivation of QSARs from hydrophobic, ionization and electronic parameters.
    Zhao YH; Yuan X; Su LM; Qin WC; Abraham MH
    Chemosphere; 2009 May; 75(7):866-71. PubMed ID: 19268338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationships for skin permeability.
    Barratt MD
    Toxicol In Vitro; 1995 Feb; 9(1):27-37. PubMed ID: 20650060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure-activity relationship for prediction of the toxicity of phenols on Photobacterium phosphoreum.
    Li X; Wang Z; Liu H; Yu H
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):27-31. PubMed ID: 22562268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.