These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7863570)

  • 1. In vivo detection of ultrasonically induced cavitation by a fibre-optic technique.
    Huber P; Debus J; Peschke P; Hahn EW; Lorenz WJ
    Ultrasound Med Biol; 1994; 20(8):811-25. PubMed ID: 7863570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic interaction of ultrasonic shock waves and hyperthermia in the Dunning prostate tumor R3327-AT1.
    Huber P; Peschke P; Brix G; Hahn EW; Lorenz A; Tiefenbacher U; Wannenmacher M; Debus J
    Int J Cancer; 1999 Jul; 82(1):84-91. PubMed ID: 10360825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of the Dunning prostate rat tumor R3327-AT1 with pulsed high energy ultrasound shock waves (PHEUS): growth delay and histomorphologic changes.
    Debus J; Peschke P; Hahn EW; Lorenz WJ; Lorenz A; Ifflaender H; Zabel HJ; Van Kaick G; Pfeiler M
    J Urol; 1991 Oct; 146(4):1143-6. PubMed ID: 1895442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonochemically induced radicals generated by pulsed high-energy ultrasound in vitro and in vivo.
    Debus J; Spoo J; Jenne J; Huber P; Peschke P
    Ultrasound Med Biol; 1999 Feb; 25(2):301-6. PubMed ID: 10320319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter.
    Huber P; Jöchle K; Debus J
    Phys Med Biol; 1998 Oct; 43(10):3113-28. PubMed ID: 9814538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of cavitation activity by different shockwave pulsing regimes.
    Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M
    Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock wave-induced cavitation dose.
    Huber PE; Debus J
    Radiat Res; 2001 Sep; 156(3):301-9. PubMed ID: 11500139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method of quantitative cavitation assessment in the field of a lithotripter.
    Jöchle K; Debus J; Lorenz WJ; Huber P
    Ultrasound Med Biol; 1996; 22(3):329-38. PubMed ID: 8783465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of the implosion of ESWL-induced cavitation bubbles.
    Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R
    Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone.
    Koch C; Jenderka KV
    Ultrason Sonochem; 2008 Apr; 15(4):502-509. PubMed ID: 17644460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound.
    Huber PE; Pfisterer P
    Gene Ther; 2000 Sep; 7(17):1516-25. PubMed ID: 11001372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE; Leighton TG
    Ultrasound Med Biol; 1992; 18(3):267-81. PubMed ID: 1595133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro effect of electromagnetically generated shock waves (Lithostar) on the Dunning R3327 PAT-2 rat prostatic cancer cell-line. A potentiating effect on the in vitro cytotoxicity of vinblastin.
    Oosterhof GO; Smits GA; de Ruyter JE; van Moorselaar RJ; Schalken JA; Debruyne FM
    Urol Res; 1989; 17(1):13-9. PubMed ID: 2922886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1996; 22(8):1079-87. PubMed ID: 9004432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.