These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 786371)
1. Energy metabolism of Saccharomyces cerevisiae discrepancy between ATP balance and known metabolic functions. Lagunas R Biochim Biophys Acta; 1976 Sep; 440(3):661-74. PubMed ID: 786371 [TBL] [Abstract][Full Text] [Related]
2. Balance of production and consumption of ATP in ammonium-starved Saccharomyces cerevisiae. Lagunas R; Ruiz E J Gen Microbiol; 1988 Sep; 134(9):2507-11. PubMed ID: 3076187 [TBL] [Abstract][Full Text] [Related]
3. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788 [TBL] [Abstract][Full Text] [Related]
4. Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation. Lidén G; Persson A; Gustafsson L; Niklasson C Appl Microbiol Biotechnol; 1995 Nov; 43(6):1034-8. PubMed ID: 8590653 [TBL] [Abstract][Full Text] [Related]
5. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582 [TBL] [Abstract][Full Text] [Related]
6. A theoretical evaluation of growth yields of yeasts. Verduyn C; Stouthamer AH; Scheffers WA; van Dijken JP Antonie Van Leeuwenhoek; 1991 Jan; 59(1):49-63. PubMed ID: 2059011 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production. Teh KY; Lutz AE J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925 [TBL] [Abstract][Full Text] [Related]
8. H2O2, but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in Saccharomyces cerevisiae. An experimental and theoretical approach. Osorio H; Carvalho E; del Valle M; Günther Sillero MA; Moradas-Ferreira P; Sillero A Eur J Biochem; 2003 Apr; 270(7):1578-89. PubMed ID: 12654013 [TBL] [Abstract][Full Text] [Related]
9. Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production. Jin S; Ye K; Shimizu K J Biotechnol; 1997 May; 54(3):161-74. PubMed ID: 9208486 [TBL] [Abstract][Full Text] [Related]
10. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. Zakhartsev M; Yang X; Reuss M; Pörtner HO J Therm Biol; 2015 Aug; 52():117-29. PubMed ID: 26267506 [TBL] [Abstract][Full Text] [Related]
11. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture. Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202 [TBL] [Abstract][Full Text] [Related]
12. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870 [TBL] [Abstract][Full Text] [Related]
13. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study. Kasemets K; Nisamedtinov I; Laht TM; Abner K; Paalme T Antonie Van Leeuwenhoek; 2007 Jul; 92(1):109-28. PubMed ID: 17268890 [TBL] [Abstract][Full Text] [Related]
14. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K FEBS J; 2006 Apr; 273(8):1696-709. PubMed ID: 16623706 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching: putative fermentation/oxidation. Alipourfard I; Bakhtiyari S; Datukishvili N; Haghani K; Di Renzo L; De Miranda RC; Cioccoloni G; Basiratyan Yazdi P; Mikeladze D J Biol Regul Homeost Agents; 2018; 32(3):649-654. PubMed ID: 29921394 [TBL] [Abstract][Full Text] [Related]
16. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Woo JM; Yang KM; Kim SU; Blank LM; Park JB Appl Microbiol Biotechnol; 2014 Jul; 98(13):6085-94. PubMed ID: 24706214 [TBL] [Abstract][Full Text] [Related]
17. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Kim JH; Ryu J; Huh IY; Hong SK; Kang HA; Chang YK Bioprocess Biosyst Eng; 2014 Sep; 37(9):1871-8. PubMed ID: 24615517 [TBL] [Abstract][Full Text] [Related]
18. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Aon JC; Cortassa S Metab Eng; 2001 Jul; 3(3):250-64. PubMed ID: 11461147 [TBL] [Abstract][Full Text] [Related]
19. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. Hempfling WP; Mainzer SE J Bacteriol; 1975 Sep; 123(3):1076-87. PubMed ID: 169226 [TBL] [Abstract][Full Text] [Related]
20. Glucose and the ATP paradox in yeast. Somsen OJ; Hoeben MA; Esgalhado E; Snoep JL; Visser D; van der Heijden RT; Heijnen JJ; Westerhoff HV Biochem J; 2000 Dec; 352 Pt 2(Pt 2):593-9. PubMed ID: 11085955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]