These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 786371)
21. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. Pampulha ME; Loureiro-Dias MC FEMS Microbiol Lett; 2000 Mar; 184(1):69-72. PubMed ID: 10689168 [TBL] [Abstract][Full Text] [Related]
22. In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae. Campbell SL; Jones KA; Shulman RG FEBS Lett; 1985 Dec; 193(2):189-93. PubMed ID: 3905437 [TBL] [Abstract][Full Text] [Related]
23. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae. Thomsson E; Larsson C Appl Microbiol Biotechnol; 2006 Jul; 71(4):533-42. PubMed ID: 16317544 [TBL] [Abstract][Full Text] [Related]
24. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Gonzalez R; Andrews BA; Molitor J; Asenjo JA Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757 [TBL] [Abstract][Full Text] [Related]
25. Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase. Nilsson A; Nielsen J Sci Rep; 2016 Mar; 6():22264. PubMed ID: 26928598 [TBL] [Abstract][Full Text] [Related]
27. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316 [TBL] [Abstract][Full Text] [Related]
28. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae. Kärenlampi SO; Marin E; Hänninen OO Biochem J; 1981 Feb; 194(2):407-13. PubMed ID: 7030318 [TBL] [Abstract][Full Text] [Related]
29. Aerobic adaptation in yeast. III. Changes in metabolic intermediates during anaerobic-aerobic transitions in exponentially growing cultures. Bruver RM; Ball AJ; Tustanoff ER Can J Microbiol; 1975 Jun; 21(6):862-8. PubMed ID: 1097071 [TBL] [Abstract][Full Text] [Related]
30. Inactivation of the galactose transport system in Saccharomyces cerevisiae. DeJuan C; Lagunas R FEBS Lett; 1986 Oct; 207(2):258-61. PubMed ID: 3533630 [TBL] [Abstract][Full Text] [Related]
31. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. Kozak BU; van Rossum HM; Niemeijer MS; van Dijk M; Benjamin K; Wu L; Daran JM; Pronk JT; van Maris AJ FEMS Yeast Res; 2016 Mar; 16(2):fow006. PubMed ID: 26818854 [TBL] [Abstract][Full Text] [Related]
32. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae. Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013 [TBL] [Abstract][Full Text] [Related]
33. In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. Martins AM; Cordeiro CA; Ponces Freire AM FEBS Lett; 2001 Jun; 499(1-2):41-4. PubMed ID: 11418108 [TBL] [Abstract][Full Text] [Related]
34. Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Bideaux C; Alfenore S; Cameleyre X; Molina-Jouve C; Uribelarrea JL; Guillouet SE Appl Environ Microbiol; 2006 Mar; 72(3):2134-40. PubMed ID: 16517663 [TBL] [Abstract][Full Text] [Related]
35. Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Van Urk H; Mak PR; Scheffers WA; van Dijken JP Yeast; 1988 Dec; 4(4):283-91. PubMed ID: 3064492 [TBL] [Abstract][Full Text] [Related]
36. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. de Smidt O; du Preez JC; Albertyn J FEMS Yeast Res; 2012 Feb; 12(1):33-47. PubMed ID: 22094012 [TBL] [Abstract][Full Text] [Related]
37. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri. Møller K; Bro C; Piskur J; Nielsen J; Olsson L FEMS Yeast Res; 2002 May; 2(2):233-44. PubMed ID: 12702311 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729 [TBL] [Abstract][Full Text] [Related]
39. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Franzén CJ Yeast; 2003 Jan; 20(2):117-32. PubMed ID: 12518316 [TBL] [Abstract][Full Text] [Related]
40. Kinetic study of a change in intracellular ATP level associated with aerobic catabolism of ethanol by Streptococcus mutans. Fukui K; Kato K; Kodama T; Ohta H; Shimamoto T; Shimono T J Bacteriol; 1988 Oct; 170(10):4589-93. PubMed ID: 3170479 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]