These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 7864132)
21. Capsaicin-sensitive vagal fibres and 5-HT3-, gastrin releasing peptide- and cholecystokinin A-receptors are involved in distension-induced inhibition of gastric emptying in the rat. Bozkurt A; Oktar BK; Kurtel H; Alican I; Coşkun T; Yeğen BC Regul Pept; 1999 Sep; 83(2-3):81-6. PubMed ID: 10511461 [TBL] [Abstract][Full Text] [Related]
22. Vagal modulation of intestinal afferent sensitivity to systemic LPS in the rat. Liu CY; Mueller MH; Grundy D; Kreis ME Am J Physiol Gastrointest Liver Physiol; 2007 May; 292(5):G1213-20. PubMed ID: 17204546 [TBL] [Abstract][Full Text] [Related]
23. Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones. Li Y; Wu XY; Owyang C J Physiol; 2004 Sep; 559(Pt 2):651-62. PubMed ID: 15235095 [TBL] [Abstract][Full Text] [Related]
24. Response properties of antral mechanosensitive afferent fibers and effects of ionotropic glutamate receptor antagonists. Sengupta JN; Petersen J; Peles S; Shaker R Neuroscience; 2004; 125(3):711-23. PubMed ID: 15099685 [TBL] [Abstract][Full Text] [Related]
25. Gastro-oesophageal afferent and serotonergic inputs to vagal efferent neurones. Blackshaw LA J Auton Nerv Syst; 1994 Oct; 49(2):93-103. PubMed ID: 7806770 [TBL] [Abstract][Full Text] [Related]
26. Centrifugal gastric vagal afferent unit activities: another source of gastric "efferent" control. Wei JY; Adelson DW; Taché Y; Go VL J Auton Nerv Syst; 1995 Apr; 52(2-3):83-97. PubMed ID: 7615902 [TBL] [Abstract][Full Text] [Related]
27. Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway. Glatzle J; Darcel N; Rechs AJ; Kalogeris TJ; Tso P; Raybould HE Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R354-9. PubMed ID: 15117731 [TBL] [Abstract][Full Text] [Related]
28. Interleukin-1beta sensitizes the response of the gastric vagal afferent to cholecystokinin in rat. Bucinskaite V; Kurosawa M; Miyasaka K; Funakoshi A; Lundeberg T Neurosci Lett; 1997 Jun; 229(1):33-6. PubMed ID: 9224795 [TBL] [Abstract][Full Text] [Related]
29. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. Andrews PL; Grundy D; Scratcherd T J Physiol; 1980 Jan; 298():513-24. PubMed ID: 7359436 [TBL] [Abstract][Full Text] [Related]
30. Serotonin and cholecystokinin activate different populations of rat mesenteric vagal afferents. Hillsley K; Grundy D Neurosci Lett; 1998 Oct; 255(2):63-6. PubMed ID: 9835215 [TBL] [Abstract][Full Text] [Related]
31. Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents. Gourcerol G; Million M; Adelson DW; Wang Y; Wang L; Rivier J; St-Pierre DH; Taché Y Peptides; 2006 Nov; 27(11):2811-9. PubMed ID: 16934368 [TBL] [Abstract][Full Text] [Related]
32. Effects of systemic injection of interleukin-1beta on gastric vagal afferent activity in rats lacking type A cholecystokinin receptors. Kurosawa M; Bucinskaite V; Miyasaka K; Funakoshi A; Lundeberg T Neurosci Lett; 2000 Oct; 293(1):9-12. PubMed ID: 11065125 [TBL] [Abstract][Full Text] [Related]
33. Effects of brain stem cholecystokinin-8s on gastric tone and esophageal-gastric reflex. Holmes GM; Tong M; Travagli RA Am J Physiol Gastrointest Liver Physiol; 2009 Mar; 296(3):G621-31. PubMed ID: 19136379 [TBL] [Abstract][Full Text] [Related]
34. Modulation of gastrointestinal afferent sensitivity by a novel substituted benzamide (ecabapide). Jiang W; Grundy D J Auton Nerv Syst; 2000 Jan; 78(2-3):99-108. PubMed ID: 10789688 [TBL] [Abstract][Full Text] [Related]
35. Activation of vagal gastric mechanoreceptors by cholecystokinin. Davison JS Proc West Pharmacol Soc; 1986; 29():363-6. PubMed ID: 3763625 [No Abstract] [Full Text] [Related]
37. Two types of leptin-responsive gastric vagal afferent terminals: an in vitro single-unit study in rats. Wang YH; Taché Y; Sheibel AB; Go VL; Wei JY Am J Physiol; 1997 Aug; 273(2 Pt 2):R833-7. PubMed ID: 9277576 [TBL] [Abstract][Full Text] [Related]
38. Differential effects of mu-, delta-, and kappa-opioid receptor agonists on mechanosensitive gastric vagal afferent fibers in the rat. Ozaki N; Sengupta JN; Gebhart GF J Neurophysiol; 2000 Apr; 83(4):2209-16. PubMed ID: 10758129 [TBL] [Abstract][Full Text] [Related]
39. GABA(B) receptors on vagal afferent pathways: peripheral and central inhibition. Partosoedarso ER; Young RL; Blackshaw LA Am J Physiol Gastrointest Liver Physiol; 2001 Apr; 280(4):G658-68. PubMed ID: 11254492 [TBL] [Abstract][Full Text] [Related]
40. Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Burdyga G; Lal S; Spiller D; Jiang W; Thompson D; Attwood S; Saeed S; Grundy D; Varro A; Dimaline R; Dockray GJ Gastroenterology; 2003 Jan; 124(1):129-39. PubMed ID: 12512037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]