BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7864160)

  • 1. Short-term response of nonurea organic osmolytes in human kidney to a water load and water deprivation.
    Sizeland PC; Chambers ST; Lever M; Bason LM; Robson RA
    Am J Physiol; 1995 Feb; 268(2 Pt 2):F227-33. PubMed ID: 7864160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter- and intra-individual variations in normal urinary glycine betaine excretion.
    Lever M; Atkinson W; Sizeland PC; Chambers ST; George PM
    Clin Biochem; 2007 Apr; 40(7):447-53. PubMed ID: 17335790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis.
    Yancey PH; Burg MB
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F602-7. PubMed ID: 2801962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrarenal distribution of organic osmolytes in human kidney.
    Schmolke M; Schilling A; Keiditsch E; Guder WG
    Eur J Clin Chem Clin Biochem; 1996 Jun; 34(6):499-501. PubMed ID: 8831052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of organic osmolytes in avian renal medulla: a nonurea osmotic gradient system.
    Lien YH; Pacelli MM; Braun EJ
    Am J Physiol; 1993 Jun; 264(6 Pt 2):R1045-9. PubMed ID: 8322955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmoprotective activity for Escherichia coli in mammalian renal inner medulla and urine. Correlation of glycine and proline betaines and sorbitol with response to osmotic loads.
    Chambers ST; Kunin CM
    J Clin Invest; 1987 Nov; 80(5):1255-60. PubMed ID: 3316273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of relative amounts of medullary organic osmolytes: effects of NaCl and urea differ.
    Nakanishi T; Uyama O; Nakahama H; Takamitsu Y; Sugita M
    Am J Physiol; 1993 Mar; 264(3 Pt 2):F472-9. PubMed ID: 8456960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic effectors in kidneys of xeric and mesic rodents: corticomedullary distributions and changes with water availability.
    Yancey PH
    J Comp Physiol B; 1988; 158(3):369-80. PubMed ID: 3057002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment of renal medullary osmolyte accumulation in potassium-depleted rats.
    Nakanishi T; Takamitsu Y; Nakahama H; Sugita M
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F139-45. PubMed ID: 8048554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells.
    Burg MB
    J Exp Zool; 1994 Feb; 268(2):171-5. PubMed ID: 8301253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of urine concentrating ability and accumulation of medullary osmolytes after chronic diuresis.
    Sone M; Ohno A; Albrecht GJ; Thurau K; Beck FX
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F480-90. PubMed ID: 7485532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Betaine transporter cDNA cloning and effect of osmolytes on its mRNA induction.
    Ferraris JD; Burg MB; Williams CK; Peters EM; García-Pérez A
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C650-4. PubMed ID: 8779931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting the ratio of different organic osmolytes in renal medullary cells.
    Moriyama T; Garcia-Perez A; Burg MB
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F847-58. PubMed ID: 2240234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of de novo synthesized betaine in rat kidney: role of renal synthesis on medullary betaine accumulation.
    Moeckel GW; Lien YH
    Am J Physiol; 1997 Jan; 272(1 Pt 2):F94-9. PubMed ID: 9039054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal glycine betaine content of the blood and urine of diabetic and renal patients.
    Lever M; Sizeland PC; Bason LM; Hayman CM; Robson RA; Chambers ST
    Clin Chim Acta; 1994 Oct; 230(1):69-79. PubMed ID: 7850995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmotic adaptation of renal medullary cells during transition from chronic diuresis to antidiuresis.
    Sone M; Albrecht GJ; Dörge A; Thurau K; Beck FX
    Am J Physiol; 1993 Apr; 264(4 Pt 2):F722-9. PubMed ID: 8097380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osmolytes in renal medulla during rapid changes in papillary tonicity.
    Beck FX; Schmolke M; Guder WG; Dörge A; Thurau K
    Am J Physiol; 1992 May; 262(5 Pt 2):F849-56. PubMed ID: 1590428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylamines and polyols in kidney, urinary bladder, urine, liver, brain, and plasma. An analysis using 1H nuclear magnetic resonance spectroscopy.
    Gullans SR; Heilig CW; Stromski ME; Blumenfeld JD
    Ren Physiol Biochem; 1989; 12(3):191-201. PubMed ID: 2623345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of organic osmolytes in adaptation of renal cells to high osmolality.
    Garcia-Perez A; Burg MB
    J Membr Biol; 1991 Jan; 119(1):1-13. PubMed ID: 1901090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of an aldose reductase inhibitor on organic osmotic effectors in rat renal medulla.
    Yancey PH; Haner RG; Freudenberger TH
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F733-8. PubMed ID: 2122742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.