These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7864187)

  • 21. Effect of acute changes in renal arterial blood flow on urine oxygen tension in dogs.
    Kainuma M; Kimura N; Shimada Y
    Crit Care Med; 1990 Mar; 18(3):309-12. PubMed ID: 2302958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.
    Feng L; Siu K; Moore LC; Marsh DJ; Chon KH
    Ann Biomed Eng; 2006 Feb; 34(2):339-53. PubMed ID: 16496083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Total and local renal blood flow and filtration in the rat during reduced renal arterial blood pressure.
    Hope A; Clausen G; Rosivall L
    Acta Physiol Scand; 1981 Dec; 113(4):455-63. PubMed ID: 7348030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Autoregulation of renal blood flow and blood pressure variability in the conscious rat].
    Pires SL; Barrès C; Sassard J; Julien C
    Arch Mal Coeur Vaiss; 2001 Aug; 94(8):818-21. PubMed ID: 11575210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chaos in blood pressure control.
    Wagner CD; Nafz B; Persson PB
    Cardiovasc Res; 1996 Mar; 31(3):380-7. PubMed ID: 8681325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear analysis of renal autoregulation under broadband forcing conditions.
    Marmarelis VZ; Chon KH; Chen YM; Marsh DJ; Holstein-Rathlou NH
    Ann Biomed Eng; 1993; 21(6):591-603. PubMed ID: 8116912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Splenorenal reflex modulates renal blood flow in the rat.
    Hamza SM; Kaufman S
    J Physiol; 2004 Jul; 558(Pt 1):277-82. PubMed ID: 15090605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of soluble guanylate cyclase in renal hemodynamics and autoregulation in the rat.
    Dautzenberg M; Kahnert A; Stasch JP; Just A
    Am J Physiol Renal Physiol; 2014 Nov; 307(9):F1003-12. PubMed ID: 25209860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct measurement of renal medullary blood flow in the dog.
    Strick DM; Fiksen-Olsen MJ; Lockhart JC; Roman RJ; Romero JC
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R253-9. PubMed ID: 8048629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships among endotoxemia, arterial pressure, and renal function in dogs.
    O'Hair DP; Adams MB; Tunberg TC; Osborn JL
    Circ Shock; 1989 Mar; 27(3):199-210. PubMed ID: 2650915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamic responses to acute and gradual renal artery stenosis in pigs.
    Rognant N; Rouvière O; Janier M; Lê QH; Barthez P; Laville M; Juillard L
    Am J Hypertens; 2010 Nov; 23(11):1216-9. PubMed ID: 20634798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of chaotic pressure oscillations in isolated resistance arteries by EDRF.
    Griffith TM; Edwards DH
    Eur Heart J; 1993 Nov; 14 Suppl I():60-7. PubMed ID: 8293781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endothelium-derived NO stimulates pressure-dependent renin release in conscious dogs.
    Persson PB; Baumann JE; Ehmke H; Hackenthal E; Kirchheim HR; Nafz B
    Am J Physiol; 1993 Jun; 264(6 Pt 2):F943-7. PubMed ID: 8322896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent.
    Lüdemann L; Nafz B; Elsner F; Grosse-Siestrup C; Meissler M; Kaufels N; Rehbein H; Persson PB; Michaely HJ; Lengsfeld P; Voth M; Gutberlet M
    Invest Radiol; 2009 Mar; 44(3):125-34. PubMed ID: 19151609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 1/f fluctuations in arterial pressure and regulation of renal blood flow in dogs.
    Marsh DJ; Osborn JL; Cowley AW
    Am J Physiol; 1990 May; 258(5 Pt 2):F1394-400. PubMed ID: 2337155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fractal and noisy CBV dynamics in humans: influence of age and gender.
    Eke A; Hermán P; Hajnal M
    J Cereb Blood Flow Metab; 2006 Jul; 26(7):891-8. PubMed ID: 16292253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis.
    Bell TD; DiBona GF; Wang Y; Brands MW
    J Am Soc Nephrol; 2006 Aug; 17(8):2184-92. PubMed ID: 16807404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endothelium modulates renal blood flow but not autoregulation.
    Beierwaltes WH; Sigmon DH; Carretero OA
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F943-9. PubMed ID: 1621818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fractal dimension analysis of the oscillated blood flow with a vibrating flow pump.
    Yambe T; Sonobe T; Naganuma S; Kobayashi S; Nanka S; Akiho H; Kakinuma Y; Mitsuoka M; Chiba S; Ohsawa N
    Artif Organs; 1995 Jul; 19(7):729-33. PubMed ID: 8572984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can the analytic techniques of nonlinear dynamics distinguish periodic, random and chaotic signals?
    Denton TA; Diamond GA
    Comput Biol Med; 1991; 21(4):243-63. PubMed ID: 1764933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.