These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 7864366)
21. Order and maximum incorporation of N-acetyl-D-galactosamine into threonine residues of MUC2 core peptide with microsome fraction of human-colon-carcinoma LS174T cells. Iida S; Takeuchi H; Kato K; Yamamoto K; Irimura T Biochem J; 2000 Apr; 347(Pt 2):535-42. PubMed ID: 10749684 [TBL] [Abstract][Full Text] [Related]
22. Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Brockhausen I; Dowler T; Paulsen H Biochim Biophys Acta; 2009 Oct; 1790(10):1244-57. PubMed ID: 19524017 [TBL] [Abstract][Full Text] [Related]
23. Distinct orders of GalNAc incorporation into a peptide with consecutive threonines. Kato K; Takeuchi H; Miyahara N; Kanoh A; Hassan H; Clausen H; Irimura T Biochem Biophys Res Commun; 2001 Sep; 287(1):110-5. PubMed ID: 11549261 [TBL] [Abstract][Full Text] [Related]
24. Structural analysis of peptide substrates for mucin-type O-glycosylation. Kirnarsky L; Nomoto M; Ikematsu Y; Hassan H; Bennett EP; Cerny RL; Clausen H; Hollingsworth MA; Sherman S Biochemistry; 1998 Sep; 37(37):12811-7. PubMed ID: 9737858 [TBL] [Abstract][Full Text] [Related]
25. Chemical synthesis of 23 kDa glycoprotein by repetitive segment condensation: a synthesis of MUC2 basal motif carrying multiple O-GalNAc moieties. Hojo H; Matsumoto Y; Nakahara Y; Ito E; Suzuki Y; Suzuki M; Suzuki A; Nakahara Y J Am Chem Soc; 2005 Oct; 127(39):13720-5. PubMed ID: 16190738 [TBL] [Abstract][Full Text] [Related]
26. O-glycosylation in Toxoplasma gondii: identification and analysis of a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Stwora-Wojczyk MM; Kissinger JC; Spitalnik SL; Wojczyk BS Int J Parasitol; 2004 Mar; 34(3):309-22. PubMed ID: 15003492 [TBL] [Abstract][Full Text] [Related]
27. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Brockhausen I; Toki D; Brockhausen J; Peters S; Bielfeldt T; Kleen A; Paulsen H; Meldal M; Hagen F; Tabak LA Glycoconj J; 1996 Oct; 13(5):849-56. PubMed ID: 8910012 [TBL] [Abstract][Full Text] [Related]
28. Activity of partially purified UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase with different peptide acceptors. Porowska H; Paszkiewicz-Gadek A; Gindzieński A Acta Biochim Pol; 1999; 46(2):365-70. PubMed ID: 10547037 [TBL] [Abstract][Full Text] [Related]
29. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). Kubota T; Shiba T; Sugioka S; Furukawa S; Sawaki H; Kato R; Wakatsuki S; Narimatsu H J Mol Biol; 2006 Jun; 359(3):708-27. PubMed ID: 16650853 [TBL] [Abstract][Full Text] [Related]
30. Influence of acceptor substrate primary amino acid sequence on the activity of human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. Studies with the MUC1 tandem repeat. Nishimori I; Johnson NR; Sanderson SD; Perini F; Mountjoy K; Cerny RL; Gross ML; Hollingsworth MA J Biol Chem; 1994 Jun; 269(23):16123-30. PubMed ID: 8206912 [TBL] [Abstract][Full Text] [Related]
31. Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. Hanisch FG; Reis CA; Clausen H; Paulsen H Glycobiology; 2001 Sep; 11(9):731-40. PubMed ID: 11555617 [TBL] [Abstract][Full Text] [Related]
32. Function of conserved aromatic residues in the Gal/GalNAc-glycosyltransferase motif of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1. Tenno M; Saeki A; Elhammer AP; Kurosaka A FEBS J; 2007 Dec; 274(23):6037-45. PubMed ID: 17970754 [TBL] [Abstract][Full Text] [Related]
33. Studies of acceptor site specificities for three members of UDP-GalNAc:N-acetylgalactosaminyltransferases by using a synthetic peptide mimicking the tandem repeat of MUC5AC. Tetaert D; Richet C; Gagnon J; Boersma A; Degand P Carbohydr Res; 2001 Jul; 333(2):165-71. PubMed ID: 11448678 [TBL] [Abstract][Full Text] [Related]
34. Sequence-variant repeats of MUC1 show higher conformational flexibility, are less densely O-glycosylated and induce differential B lymphocyte responses. von Mensdorff-Pouilly S; Kinarsky L; Engelmann K; Baldus SE; Verheijen RH; Hollingsworth MA; Pisarev V; Sherman S; Hanisch FG Glycobiology; 2005 Aug; 15(8):735-46. PubMed ID: 15814824 [TBL] [Abstract][Full Text] [Related]
35. Site-specific glycosylation analysis of human apolipoprotein B100 using LC/ESI MS/MS. Harazono A; Kawasaki N; Kawanishi T; Hayakawa T Glycobiology; 2005 May; 15(5):447-62. PubMed ID: 15616123 [TBL] [Abstract][Full Text] [Related]
36. A MUC1 tandem repeat reporter protein produced in CHO-K1 cells has sialylated core 1 O-glycans and becomes more densely glycosylated if coexpressed with polypeptide-GalNAc-T4 transferase. Olson FJ; Bäckström M; Karlsson H; Burchell J; Hansson GC Glycobiology; 2005 Feb; 15(2):177-91. PubMed ID: 15456735 [TBL] [Abstract][Full Text] [Related]
37. Glycosylation in human thyroglobulin: location of the N-linked oligosaccharide units and comparison with bovine thyroglobulin. Yang SX; Pollock HG; Rawitch AB Arch Biochem Biophys; 1996 Mar; 327(1):61-70. PubMed ID: 8615697 [TBL] [Abstract][Full Text] [Related]
38. Combination of beta-elimination and liquid chromatography/quadrupole time-of-flight mass spectrometry for the determination of O-glycosylation sites. Zheng Y; Guo Z; Cai Z Talanta; 2009 Apr; 78(2):358-63. PubMed ID: 19203595 [TBL] [Abstract][Full Text] [Related]