These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 7864387)
1. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin. Wang R; Sun S; Bekos EJ; Bright FV Anal Chem; 1995 Jan; 67(1):149-59. PubMed ID: 7864387 [TBL] [Abstract][Full Text] [Related]
2. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins. Ingersoll CM; Jordan JD; Bright FV Anal Chem; 1996 Sep; 68(18):3194-8. PubMed ID: 8797379 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of acrylodan-labeled bovine and human serum albumin entrapped in a sol-gel-derived biogel. Jordan JD; Dunbar RA; Bright FV Anal Chem; 1995 Jul; 67(14):2436-43. PubMed ID: 8686877 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles. Lundgren JS; Heitz MP; Bright FV Anal Chem; 1995 Oct; 67(20):3775-81. PubMed ID: 8644923 [TBL] [Abstract][Full Text] [Related]
5. Acrylodan can label amino as well as sulfhydryl groups: results with low-density lipoprotein, lipoprotein[a], and lipid-free proteins. Mims MP; Sturgis CB; Sparrow JT; Morrisett JD Biochemistry; 1993 Sep; 32(35):9215-20. PubMed ID: 8369288 [TBL] [Abstract][Full Text] [Related]
6. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Narazaki R; Maruyama T; Otagiri M Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146 [TBL] [Abstract][Full Text] [Related]
7. A dynamical investigation of acrylodan-labeled mutant phosphate binding protein. Lundgren JS; Salins LL; Kaneva I; Daunert S Anal Chem; 1999 Feb; 71(3):589-95. PubMed ID: 9989379 [TBL] [Abstract][Full Text] [Related]
8. Urea-induced denaturation of human serum albumin labeled with acrylodan. González-Jiménez J; Cortijo M J Protein Chem; 2002 Feb; 21(2):75-9. PubMed ID: 11934277 [TBL] [Abstract][Full Text] [Related]
9. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Flora K; Brennan JD; Baker GA; Doody MA; Bright FV Biophys J; 1998 Aug; 75(2):1084-96. PubMed ID: 9675210 [TBL] [Abstract][Full Text] [Related]
10. Calcium-induced conformational change in cardiac troponin C studied by fluorescence probes attached to Cys-84. Dong WJ; Cheung HC Biochim Biophys Acta; 1996 Jul; 1295(2):139-46. PubMed ID: 8695639 [TBL] [Abstract][Full Text] [Related]
11. [Analysis of log-normal components of fluorescence spectra of prodan and acrylodan bound to proteins]. Emel'ianenko VI; Reshetniak IaK; Andreev OA; Burshteĭn EA Biofizika; 2000; 45(2):207-19. PubMed ID: 10776530 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent probing of urea-induced chemical unfolding of bovine serum albumin by intramolecular charge transfer fluorescence probe E-3-(4-dimethylamino-naphthalen-1-yl)-acrylic acid. Ghosh S; Guchhait N Photochem Photobiol; 2010; 86(2):290-6. PubMed ID: 20003158 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved evanescent wave-induced fluorescence anisotropy for the determination of molecular conformational changes of proteins at an interface. Gee ML; Lensun L; Smith TA; Scholes CA Eur Biophys J; 2004 Apr; 33(2):130-9. PubMed ID: 14586518 [TBL] [Abstract][Full Text] [Related]
14. Effect of N-B transition on the microenvironment surrounding 34Cys in human serum albumin. Narazaki R; Maruyama T; Otagiri M Biol Pharm Bull; 1997 Apr; 20(4):452-4. PubMed ID: 9145230 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of acrylodan-labelled cAMP-dependent protein kinase catalytic subunit denaturation. Kivi R; Loog M; Jemth P; Järv J Protein J; 2013 Oct; 32(7):519-25. PubMed ID: 24048767 [TBL] [Abstract][Full Text] [Related]
16. Structure, stability, and orientation of BSA adsorbed to silica. Larsericsdotter H; Oscarsson S; Buijs J J Colloid Interface Sci; 2005 Sep; 289(1):26-35. PubMed ID: 16009213 [TBL] [Abstract][Full Text] [Related]
17. Adsorption kinetics of bovine serum albumin on fused silica: population heterogeneities revealed by single-molecule fluorescence microscopy. Kwok KC; Yeung KM; Cheung NH Langmuir; 2007 Feb; 23(4):1948-52. PubMed ID: 17279679 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of bovine serum albumin on fused silica: Elucidation of protein-protein interactions by single-molecule fluorescence microscopy. Yeung KM; Lu ZJ; Cheung NH Colloids Surf B Biointerfaces; 2009 Mar; 69(2):246-50. PubMed ID: 19118986 [TBL] [Abstract][Full Text] [Related]
19. Probing microenvironment of micelle and albumin using diethyl 6-(dimethylamino)naphthalene-2,3-dicarboxylate: An electroneutral solvatochromic fluorescent probe. Mallick S; Pal K; Koner AL J Colloid Interface Sci; 2016 Apr; 467():81-89. PubMed ID: 26773610 [TBL] [Abstract][Full Text] [Related]
20. Time-resolved fluorescence studies on bovine serum albumin denaturation process. Togashi DM; Ryder AG J Fluoresc; 2006 Mar; 16(2):153-60. PubMed ID: 16382334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]