BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 7864650)

  • 1. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA.
    Giulivi C; Boveris A; Cadenas E
    Arch Biochem Biophys; 1995 Feb; 316(2):909-16. PubMed ID: 7864650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: an EPR study.
    Massa EM; Giulivi C
    Free Radic Biol Med; 1993 May; 14(5):559-65. PubMed ID: 8394271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport.
    Sanders SP; Zweier JL; Kuppusamy P; Harrison SJ; Bassett DJ; Gabrielson EW; Sylvester JT
    J Clin Invest; 1993 Jan; 91(1):46-52. PubMed ID: 8380815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide.
    Yim MB; Chock PB; Stadtman ER
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study.
    Zhu BZ; Zhao HT; Kalyanaraman B; Frei B
    Free Radic Biol Med; 2002 Mar; 32(5):465-73. PubMed ID: 11864786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation.
    Thomas C; Mackey MM; Diaz AA; Cox DP
    Redox Rep; 2009; 14(3):102-8. PubMed ID: 19490751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA.
    Hauptmann N; Grimsby J; Shih JC; Cadenas E
    Arch Biochem Biophys; 1996 Nov; 335(2):295-304. PubMed ID: 8914926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles.
    Partridge RS; Monroe SM; Parks JK; Johnson K; Parker WD; Eaton GR; Eaton SS
    Arch Biochem Biophys; 1994 Apr; 310(1):210-7. PubMed ID: 8161207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyl radical scavenging action of capsaicin.
    Okada Y; Okajima H; Shima Y; Ohta H
    Redox Rep; 2002; 7(3):153-7. PubMed ID: 12189045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA; Arbour NC; Upham B; Church DF
    Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the formation of oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct from the nucleoside 2'-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity.
    Valavanidis A; Vlahoyianni T; Fiotakis K
    Free Radic Res; 2005 Oct; 39(10):1071-81. PubMed ID: 16298732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species.
    Sandström BE; Svoboda P; Granström M; Harms-Ringdahl M; Candeias LP
    Free Radic Biol Med; 1997; 23(5):744-53. PubMed ID: 9296451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of hydroxyl-free radical by reaction of hydrogen peroxide with N-methyl-N'-nitro-N-nitrosoguanidine.
    Mikuni T; Tatsuta M; Kamachi M
    Cancer Res; 1985 Dec; 45(12 Pt 1):6442-5. PubMed ID: 2998601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper redox-dependent activation of 2-tert-butyl(1,4)hydroquinone: formation of reactive oxygen species and induction of oxidative DNA damage in isolated DNA and cultured rat hepatocytes.
    Li Y; Seacat A; Kuppusamy P; Zweier JL; Yager JD; Trush MA
    Mutat Res; 2002 Jul; 518(2):123-33. PubMed ID: 12113763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effects in the spin trapping of lipid oxyl radicals.
    Schaich KM; Borg DC
    Free Radic Res Commun; 1990; 9(3-6):267-78. PubMed ID: 2167265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of vanadyl with hydrogen peroxide. An ESR and spin trapping study.
    Carmichael AJ
    Free Radic Res Commun; 1990; 10(1-2):37-45. PubMed ID: 2165984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes.
    Adams JD; Klaidman LK; Leung AC
    Free Radic Biol Med; 1993 Aug; 15(2):181-6. PubMed ID: 8397143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.