BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7865740)

  • 1. Antibodies to nerve growth factor (NGF) prolong the sensitive period for monocular deprivation in the rat.
    Domenici L; Cellerino A; Berardi N; Cattaneo A; Maffei L
    Neuroreport; 1994 Oct; 5(16):2041-4. PubMed ID: 7865740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Maffei L; Berardi N; Domenici L; Parisi V; Pizzorusso T
    J Neurosci; 1992 Dec; 12(12):4651-62. PubMed ID: 1334503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). I. Visual cortex.
    Berardi N; Domenici L; Parisi V; Pizzorusso T; Cellerino A; Maffei L
    Proc Biol Sci; 1993 Jan; 251(1330):17-23. PubMed ID: 8094561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve growth factor preserves behavioral visual acuity in monocularly deprived kittens.
    Fiorentini A; Berardi N; Maffei L
    Vis Neurosci; 1995; 12(1):51-5. PubMed ID: 7718502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TrkA activation in the rat visual cortex by antirat trkA IgG prevents the effect of monocular deprivation.
    Pizzorusso T; Berardi N; Rossi FM; Viegi A; Venstrom K; Reichardt LF; Maffei L
    Eur J Neurosci; 1999 Jan; 11(1):204-12. PubMed ID: 9987024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity.
    Caleo M; Lodovichi C; Maffei L
    Eur J Neurosci; 1999 Aug; 11(8):2979-84. PubMed ID: 10457192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NGF prevents the changes induced by monocular deprivation during the critical period in rats.
    Yan HQ; Mazow ML; Dafny N
    Brain Res; 1996 Jan; 706(2):318-22. PubMed ID: 8822375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period.
    Duffy KR; Lingley AJ; Holman KD; Mitchell DE
    J Comp Neurol; 2016 Sep; 524(13):2643-53. PubMed ID: 26878686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex.
    Carmignoto G; Canella R; Candeo P; Comelli MC; Maffei L
    J Physiol; 1993 May; 464():343-60. PubMed ID: 8229806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). II. Lateral geniculate nucleus.
    Domenici L; Cellerino A; Maffei L
    Proc Biol Sci; 1993 Jan; 251(1330):25-31. PubMed ID: 8094562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual deprivation at the critical period modulates photic evoked responses.
    Yan HQ; Mazow ML; Dafny N
    Int J Neurosci; 1995 Dec; 83(3-4):241-52. PubMed ID: 8869430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation selectivity is reduced by monocular deprivation in combination with PKA inhibitors.
    Beaver CJ; Fischer QS; Ji Q; Daw NW
    J Neurophysiol; 2002 Oct; 88(4):1933-40. PubMed ID: 12364519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical effects of monocular deprivation in the rat.
    Pizzorusso T; Fagiolini M; Fabris M; Ferrari G; Maffei L
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2572-6. PubMed ID: 8146156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the transcription factor Zif268 in the visual cortex of monocularly deprived rats: effects of nerve growth factor.
    Caleo M; Lodovichi C; Pizzorusso T; Maffei L
    Neuroscience; 1999; 91(3):1017-26. PubMed ID: 10391479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.