BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7865740)

  • 21. A critical period in the sensitivity of basal forebrain cholinergic neurones to NGF deprivation.
    Molnar M; Ruberti F; Cozzari C; Domenici L; Cattaneo A
    Neuroreport; 1997 Jan; 8(2):575-9. PubMed ID: 9080451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus.
    Kutcher MR; Duffy KR
    Vis Neurosci; 2007; 24(6):775-85. PubMed ID: 17915043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monocular visual deprivation at the critical period modulates photic evoked responses.
    Yan HQ; Mazow ML; Dafny N
    Brain Res Bull; 1995; 36(6):545-8. PubMed ID: 7757488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system.
    Berardi N; Cellerino A; Domenici L; Fagiolini M; Pizzorusso T; Cattaneo A; Maffei L
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):684-8. PubMed ID: 8290581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
    Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE
    Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nerve growth factor prevents the amblyopic effects of monocular deprivation.
    Domenici L; Berardi N; Carmignoto G; Vantini G; Maffei L
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8811-5. PubMed ID: 1924342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monocular deprivation decreases brain-derived neurotrophic factor immunoreactivity in the rat visual cortex.
    Rossi FM; Bozzi Y; Pizzorusso T; Maffei L
    Neuroscience; 1999 May; 90(2):363-8. PubMed ID: 10215141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anatomical correlates of functional plasticity in mouse visual cortex.
    Antonini A; Fagiolini M; Stryker MP
    J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex.
    Cellerino A; Siciliano R; Domenici L; Maffei L
    Neuroscience; 1992 Dec; 51(4):749-53. PubMed ID: 1488119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
    Tong L; Xie Y; Yu H
    Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color.
    Lunghi C; Burr DC; Morrone MC
    J Vis; 2013 May; 13(6):. PubMed ID: 23637272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-derived neurotrophic factor reversed experience-dependent synaptic modifications in kitten visual cortex.
    Galuske RA; Kim DS; Castren E; Thoenen H; Singer W
    Eur J Neurosci; 1996 Jul; 8(7):1554-9. PubMed ID: 8758963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation.
    Maffei A; Nelson SB; Turrigiano GG
    Nat Neurosci; 2004 Dec; 7(12):1353-9. PubMed ID: 15543139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex.
    Bozzi Y; Pizzorusso T; Cremisi F; Rossi FM; Barsacchi G; Maffei L
    Neuroscience; 1995 Dec; 69(4):1133-44. PubMed ID: 8848102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apoptosis and retinal projections in the dorsal lateral geniculate nucleus after monocular deprivation during the later phase of the critical period in the rat.
    Kawabata K; Maeda S; Takanaga A; Ito H; Tanaka K; Hayakawa T; Seki M
    Anat Sci Int; 2003 Jun; 78(2):104-10. PubMed ID: 12828423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurotrophin-4/5 alters responses and blocks the effect of monocular deprivation in cat visual cortex during the critical period.
    Gillespie DC; Crair MC; Stryker MP
    J Neurosci; 2000 Dec; 20(24):9174-86. PubMed ID: 11124995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.