These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 786634)
1. Insulin action on glucose transport and calcium fluxes in developing muscle cells in vitro. Schudt C; Gaertner U; Pette D Eur J Biochem; 1976 Sep; 68(1):103-11. PubMed ID: 786634 [TBL] [Abstract][Full Text] [Related]
2. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle. Clausen T; Elbrink J; Dahl-Hansen AB Biochim Biophys Acta; 1975 Jan; 375(2):292-308. PubMed ID: 1125213 [TBL] [Abstract][Full Text] [Related]
3. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. X. Effect of glucose transport stimuli on the efflux of isotopically labelled calcium and 3-O-methylglucose from soleus muscles and epididymal fat pads of the rat. Sørensen SS; Christensen F; Clausen T Biochim Biophys Acta; 1980 Nov; 602(2):433-45. PubMed ID: 6252967 [TBL] [Abstract][Full Text] [Related]
4. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat. Rasmussen MJ; Clausen T Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557 [TBL] [Abstract][Full Text] [Related]
5. Insulin regulation of sugar transport in giant muscle fibres of the barnacle. Baker PF; Carruthers A J Physiol; 1983 Mar; 336():397-431. PubMed ID: 6308227 [TBL] [Abstract][Full Text] [Related]
6. Effect of ionophore A23187 on basal and insulin-stimulated sugar transport by rat soleus muscle. Hall S; Keo L; Yu KT; Gould MK Diabetes; 1982 Oct; 31(10):846-50. PubMed ID: 6818067 [TBL] [Abstract][Full Text] [Related]
7. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. XI. The effect of vanadate on 45Ca-efflux and sugar transport in adipose tissue and skeletal muscle. Clausen T; Andersen TL; Stürup-Johansen M; Petkova O Biochim Biophys Acta; 1981 Aug; 646(2):261-7. PubMed ID: 6913407 [TBL] [Abstract][Full Text] [Related]
8. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656 [TBL] [Abstract][Full Text] [Related]
9. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. Gulve EA; Cartee GD; Zierath JR; Corpus VM; Holloszy JO Am J Physiol; 1990 Nov; 259(5 Pt 1):E685-91. PubMed ID: 2240207 [TBL] [Abstract][Full Text] [Related]
10. Regulation of glycogen synthase interconversion in cultured muscle cells: actions of insulin, calcium, ionophore A 23187 and cytochalasin B. Gaertner U; Schudt C; Pette D Mol Cell Endocrinol; 1977 Jul; 8(1):35-46. PubMed ID: 407113 [TBL] [Abstract][Full Text] [Related]
11. Regulation of glucose transport in Ca2+-tolerant myocytes from adult rat heart. Bihler I; McNevin SR; Sawh PC Biochim Biophys Acta; 1985 Aug; 846(2):208-15. PubMed ID: 2411296 [TBL] [Abstract][Full Text] [Related]
12. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents. Tabata I; Schluter J; Gulve EA; Holloszy JO Diabetes; 1994 Jul; 43(7):903-7. PubMed ID: 8013755 [TBL] [Abstract][Full Text] [Related]
13. Glucose uptake in isolated heart cells: studies on the role of insulin. Eckel J; Reinauer H Basic Res Cardiol; 1985; 80 Suppl 2():103-6. PubMed ID: 3933479 [TBL] [Abstract][Full Text] [Related]
14. Activation of glucose transport in diabetic muscle: responses to contraction and insulin. Wallberg-Henriksson H; Holloszy JO Am J Physiol; 1985 Sep; 249(3 Pt 1):C233-7. PubMed ID: 3898862 [TBL] [Abstract][Full Text] [Related]
15. Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle. Galuska D; Zierath J; Thörne A; Sonnenfeld T; Wallberg-Henriksson H Diabete Metab; 1991 May; 17(1 Pt 2):159-63. PubMed ID: 1936469 [TBL] [Abstract][Full Text] [Related]
16. Regulation of 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells. Bigornia L; Wattis M; Bihler I Biochim Biophys Acta; 1986 Apr; 886(2):177-86. PubMed ID: 3083872 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Ploug T; Galbo H; Vinten J; Jørgensen M; Richter EA Am J Physiol; 1987 Jul; 253(1 Pt 1):E12-20. PubMed ID: 3300362 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory effect of epinephrine on insulin-stimulated glucose uptake by rat skeletal muscle. Chiasson JL; Shikama H; Chu DT; Exton JH J Clin Invest; 1981 Sep; 68(3):706-13. PubMed ID: 6115864 [TBL] [Abstract][Full Text] [Related]
19. Phenylarsine oxide inhibits insulin-dependent glucose transport activity in rat soleus muscles. Wang C; Hsieh CH; Wu WG Biochem Biophys Res Commun; 1991 Apr; 176(1):201-6. PubMed ID: 2018517 [TBL] [Abstract][Full Text] [Related]
20. Mitogen-stimulated glucose transport in thymocytes. Possible role of Ca++ and antagonism by adenosine 3':5'-monophosphate. Whitesell RR; Johnson RA; Tarpley HL; Regen DM J Cell Biol; 1977 Feb; 72(2):456-69. PubMed ID: 188831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]