These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 7867347)

  • 1. Beneficial effects of combined thromboxane and leukotriene receptor antagonism in hemorrhagic shock.
    Patel JP; Beck LD; Briglia FA; Hock CE
    Crit Care Med; 1995 Feb; 23(2):231-7. PubMed ID: 7867347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial actions of thromboxane receptor antagonism in hemorrhagic shock.
    Bitterman H; Yanagisawa A; Lefer AM
    Circ Shock; 1986; 20(1):1-11. PubMed ID: 2945667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonism of thromboxane actions in the isolated perfused rat heart.
    Stahl GL; Darius H; Lefer AM
    Life Sci; 1986 Jun; 38(22):2037-41. PubMed ID: 2940431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterisation of receptors for cysteinyl leukotrienes in smooth muscle.
    Jonsson EW
    Acta Physiol Scand Suppl; 1998 Mar; 641():1-55. PubMed ID: 9597121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of thromboxane release by extracellular UTP and ATP from perfused rat liver. Role of icosanoids in mediating the nucleotide responses.
    Häussinger D; Busshardt E; Stehle T; Stoll B; Wettstein M; Gerok W
    Eur J Biochem; 1988 Dec; 178(1):249-56. PubMed ID: 2849542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation of the protective effects of a converting enzyme inhibitor and a thromboxane synthetase inhibitor in hemorrhagic shock.
    Bitterman H; Phillips GR; Dragon G; Lefer AM
    J Pharmacol Exp Ther; 1987 Jul; 242(1):8-14. PubMed ID: 3039116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial actions of antagonism of peptide leukotrienes in hemorrhagic shock.
    Bitterman H; Smith BA; Lefer AM
    Circ Shock; 1988 Mar; 24(3):159-68. PubMed ID: 3383353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesangial cell immune injury: effects of thromboxane receptor antagonism.
    Bresnahan BA; Roman RJ; Bagchus WM; Lianos EA
    J Am Soc Nephrol; 1991 Feb; 1(8):1041-7. PubMed ID: 1832980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of blood pressure by centrally injected U-46619, a thromboxane A(2) analog, in hemorrhaged hypotensive rats: investigation of different brain areas.
    Yalcin M; Savci V
    Pharmacology; 2004 Apr; 70(4):177-87. PubMed ID: 15001818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the thromboxane receptor antagonist SQ 29,548 on myocardial infarct size in dogs.
    Grover GJ; Schumacher WA
    J Cardiovasc Pharmacol; 1988 Jan; 11(1):29-35. PubMed ID: 2450253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-ischemic actions of a new thromboxane receptor antagonist, SQ-29,548, in acute myocardial ischemia.
    Hock CE; Brezinski ME; Lefer AM
    Eur J Pharmacol; 1986 Mar; 122(2):213-9. PubMed ID: 3011442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial effects of BAY u3405, a novel thromboxane A2 receptor antagonist, in splanchnic artery occlusion shock.
    Canale P; Squadrito F; Altavilla D; Ioculano M; Campo GM; Squadrito G; Urna G; Sardella A; Caputi AP
    Pharmacology; 1994 Dec; 49(6):376-85. PubMed ID: 7878075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo pharmacologic profile of YM158, a new dual antagonist for leukotriene D4 and thromboxane A2 receptors.
    Arakida Y; Ohga K; Suwa K; Okada Y; Morio H; Yokota M; Miyata K; Yamada T; Honda K
    Jpn J Pharmacol; 2000 May; 83(1):63-72. PubMed ID: 10887942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal vasoconstriction with U-46,619; role of arachidonate metabolites.
    Wilcox CS; Folger WH; Welch WJ
    J Am Soc Nephrol; 1994 Oct; 5(4):1120-4. PubMed ID: 7849252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of combined leukotriene D(4) and thromboxane A(2) receptor antagonist on mediator-controlled resistance in guinea pigs.
    Arakida Y; Ohga K; Okada Y; Morio H; Suwa K; Yokota M; Yamada T
    Eur J Pharmacol; 2000 Sep; 403(1-2):169-79. PubMed ID: 10969159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide regulation of TP receptor-mediated pulmonary vasoconstriction in the anesthetized, open-chest rat.
    Valentin JP; Bessac AM; Maffre M; John GW
    Eur J Pharmacol; 1996 Dec; 317(2-3):335-42. PubMed ID: 8997619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-participation of thromboxane A2 and leukotriene C4 and D4 in mediating cyclosporine-induced acute renal failure.
    Perico N; Pasini M; Gaspari F; Abbate M; Remuzzi G
    Transplantation; 1991 Nov; 52(5):873-8. PubMed ID: 1835198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leukotrienes cause mesenteric vasoconstriction and hemoconcentration in rats without activating thromboxane receptors.
    Schumacher WA; Heran CL; Allen GT; Ogletree ML
    Prostaglandins; 1989 Sep; 38(3):335-44. PubMed ID: 2528783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective actions of a thromboxane receptor antagonist, SQ 29548 on the ischemic myocardium: morphologic and hemodynamic effects.
    Singh J; Seth SD; Manchanda SC; Seth S
    Prostaglandins Leukot Essent Fatty Acids; 1997 Feb; 56(2):105-10. PubMed ID: 9051718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet-activating factor and arachidonic acid metabolites mediate tumor necrosis factor and eicosanoid kinetics and cardiopulmonary dysfunction during bacteremic shock.
    Quinn JV; Slotman GJ
    Crit Care Med; 1999 Nov; 27(11):2485-94. PubMed ID: 10579269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.