These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7867647)

  • 41. High-affinity Ni2+ binding selectively promotes binding of Helicobacter pylori NikR to its target urease promoter.
    Zambelli B; Danielli A; Romagnoli S; Neyroz P; Ciurli S; Scarlato V
    J Mol Biol; 2008 Nov; 383(5):1129-43. PubMed ID: 18790698
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of fnr is constrained by an upstream IS5 insertion in certain Escherichia coli K-12 strains.
    Sawers RG
    J Bacteriol; 2005 Apr; 187(8):2609-17. PubMed ID: 15805507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique.
    Skerra A; Pfitzinger I; Plückthun A
    Biotechnology (N Y); 1991 Mar; 9(3):273-8. PubMed ID: 1367302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fnr-, NarP- and NarL-dependent regulation of transcription initiation from the Haemophilus influenzae Rd napF (periplasmic nitrate reductase) promoter in Escherichia coli K-12.
    Stewart V; Bledsoe PJ
    J Bacteriol; 2005 Oct; 187(20):6928-35. PubMed ID: 16199562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FNR and its role in oxygen-regulated gene expression in Escherichia coli.
    Spiro S; Guest JR
    FEMS Microbiol Rev; 1990 Aug; 6(4):399-428. PubMed ID: 2248796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions.
    Clugston SL; Barnard JF; Kinach R; Miedema D; Ruman R; Daub E; Honek JF
    Biochemistry; 1998 Jun; 37(24):8754-63. PubMed ID: 9628737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fnr mutants that activate gene expression in the presence of oxygen.
    Kiley PJ; Reznikoff WS
    J Bacteriol; 1991 Jan; 173(1):16-22. PubMed ID: 1898918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis.
    Kuo LC; Miller AW; Lee S; Kozuma C
    Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of a fixLJ-regulated Bradyrhizobium japonicum gene sharing similarity with the Escherichia coli fnr and Rhizobium meliloti fixK genes.
    Anthamatten D; Scherb B; Hennecke H
    J Bacteriol; 1992 Apr; 174(7):2111-20. PubMed ID: 1551834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum.
    Wang YZ; Lipscomb JD
    Protein Expr Purif; 1997 Jun; 10(1):1-9. PubMed ID: 9179284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The products of the kdpDE operon are required for expression of the Kdp ATPase of Escherichia coli.
    Polarek JW; Williams G; Epstein W
    J Bacteriol; 1992 Apr; 174(7):2145-51. PubMed ID: 1532387
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The glucose transporter of Escherichia coli. Purification and characterization by Ni+ chelate affinity chromatography of the IIBCGlc subunit.
    Waeber U; Buhr A; Schunk T; Erni B
    FEBS Lett; 1993 Jun; 324(1):109-12. PubMed ID: 8504852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real time quantification of intracellular nickel using genetically encoded FRET-based nanosensor.
    Soleja N; Mohsin M
    Int J Biol Macromol; 2019 Oct; 138():648-657. PubMed ID: 31330208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific metal recognition in nickel trafficking.
    Higgins KA; Carr CE; Maroney MJ
    Biochemistry; 2012 Oct; 51(40):7816-32. PubMed ID: 22970729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Function of a novel cadmium-induced yodA protein in Escherichia coli.
    Stojnev T; Harichová J; Ferianc P; Nyström T
    Curr Microbiol; 2007 Aug; 55(2):99-104. PubMed ID: 17632755
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting bacterial nickel transport with aspergillomarasmine A suppresses virulence-associated Ni-dependent enzymes.
    Sychantha D; Chen X; Koteva K; Prehna G; Wright GD
    Nat Commun; 2024 May; 15(1):4036. PubMed ID: 38740750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows.
    Basnakova G; Stephens ER; Thaller MC; Rossolini GM; Macaskie LE
    Appl Microbiol Biotechnol; 1998 Aug; 50(2):266-72. PubMed ID: 9763695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Link between chemotactic response to Ni2+ and its adsorption onto the Escherichia coli cell surface.
    Borrok D; Borrok MJ; Fein JB; Kiessling LL
    Environ Sci Technol; 2005 Jul; 39(14):5227-33. PubMed ID: 16086452
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transitions in development - an interview with Nika Shakiba.
    Development; 2024 Mar; 151(5):. PubMed ID: 38421607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.