BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7867720)

  • 1. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression.
    Mónaco ME; Valdecantos PA; Aon MA
    Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae.
    Aon MA; Mónaco ME; Cortassa S
    Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae.
    Motizuki M; Yokota S; Tsurugi K
    Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased mitochondrial biogenesis in temperature-sensitive cell division cycle mutants of Saccharomyces cerevisiae.
    Genta HD; Mónaco ME; Aon MA
    Curr Microbiol; 1995 Dec; 31(6):327-31. PubMed ID: 8528003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SFP1 is involved in cell size modulation in respiro-fermentative growth conditions.
    Cipollina C; Alberghina L; Porro D; Vai M
    Yeast; 2005 Apr; 22(5):385-99. PubMed ID: 15806610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of carbon catabolite repression mutants in Saccharomyces cerevisiae.
    Donnini C; Goffrini P; Rossi C; Ferrero I
    Microbiologica; 1990 Oct; 13(4):283-95. PubMed ID: 2087199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae.
    Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D
    J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells.
    Dudani AK; Prasad R
    Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae.
    Müller D; Exler S; Aguilera-Vázquez L; Guerrero-Martín E; Reuss M
    Yeast; 2003 Mar; 20(4):351-67. PubMed ID: 12627401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.
    Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP
    FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae.
    Slattery MG; Liko D; Heideman W
    Eukaryot Cell; 2006 Feb; 5(2):313-20. PubMed ID: 16467472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of T-2 toxin on ethanol production by Saccharomyces cerevisiae.
    Koshinsky HA; Cosby RH; Khachatourians GG
    Biotechnol Appl Biochem; 1992 Dec; 16(3):275-86. PubMed ID: 1476665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Status of calcium influx in cell cycle of S. cerevisiae.
    Anand S; Prasad R
    Biochem Int; 1987 May; 14(5):963-70. PubMed ID: 3331516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Saccharomyces cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient limitation.
    Bordallo J; Suárez-Rendueles P
    Yeast; 1993 Apr; 9(4):339-49. PubMed ID: 8511964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.