These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 7867720)
1. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression. Mónaco ME; Valdecantos PA; Aon MA Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720 [TBL] [Abstract][Full Text] [Related]
2. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae. Aon MA; Mónaco ME; Cortassa S Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719 [TBL] [Abstract][Full Text] [Related]
3. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures. Aon MA; Cortassa S Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331 [TBL] [Abstract][Full Text] [Related]
4. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae. Motizuki M; Yokota S; Tsurugi K Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680 [TBL] [Abstract][Full Text] [Related]
5. Decreased mitochondrial biogenesis in temperature-sensitive cell division cycle mutants of Saccharomyces cerevisiae. Genta HD; Mónaco ME; Aon MA Curr Microbiol; 1995 Dec; 31(6):327-31. PubMed ID: 8528003 [TBL] [Abstract][Full Text] [Related]
6. SFP1 is involved in cell size modulation in respiro-fermentative growth conditions. Cipollina C; Alberghina L; Porro D; Vai M Yeast; 2005 Apr; 22(5):385-99. PubMed ID: 15806610 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of carbon catabolite repression mutants in Saccharomyces cerevisiae. Donnini C; Goffrini P; Rossi C; Ferrero I Microbiologica; 1990 Oct; 13(4):283-95. PubMed ID: 2087199 [TBL] [Abstract][Full Text] [Related]
9. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Gonzalez R; Andrews BA; Molitor J; Asenjo JA Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757 [TBL] [Abstract][Full Text] [Related]
10. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae. Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586 [TBL] [Abstract][Full Text] [Related]
11. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells. Dudani AK; Prasad R Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387 [TBL] [Abstract][Full Text] [Related]
12. Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Müller D; Exler S; Aguilera-Vázquez L; Guerrero-Martín E; Reuss M Yeast; 2003 Mar; 20(4):351-67. PubMed ID: 12627401 [TBL] [Abstract][Full Text] [Related]
14. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Sasaki H; Uemura H Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478 [TBL] [Abstract][Full Text] [Related]
15. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823 [TBL] [Abstract][Full Text] [Related]
16. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent. Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274 [TBL] [Abstract][Full Text] [Related]
17. The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae. Slattery MG; Liko D; Heideman W Eukaryot Cell; 2006 Feb; 5(2):313-20. PubMed ID: 16467472 [TBL] [Abstract][Full Text] [Related]
18. Effects of T-2 toxin on ethanol production by Saccharomyces cerevisiae. Koshinsky HA; Cosby RH; Khachatourians GG Biotechnol Appl Biochem; 1992 Dec; 16(3):275-86. PubMed ID: 1476665 [TBL] [Abstract][Full Text] [Related]
19. Status of calcium influx in cell cycle of S. cerevisiae. Anand S; Prasad R Biochem Int; 1987 May; 14(5):963-70. PubMed ID: 3331516 [TBL] [Abstract][Full Text] [Related]
20. Control of Saccharomyces cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient limitation. Bordallo J; Suárez-Rendueles P Yeast; 1993 Apr; 9(4):339-49. PubMed ID: 8511964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]