BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7867976)

  • 1. Reaction of 4-hydroxynonenal with some thiol-containing radioprotective agents or their active metabolites.
    de Toranzo EG; Castro JA
    Free Radic Biol Med; 1994 Dec; 17(6):605-7. PubMed ID: 7867976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of activated oxygen production by some thiols using chemiluminescence.
    Benov LC; Ribarov SR; Monovich OH
    Gen Physiol Biophys; 1992 Apr; 11(2):195-202. PubMed ID: 1330810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells.
    Held KD; Biaglow JE
    Radiat Res; 1994 Jul; 139(1):15-23. PubMed ID: 8016303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficiency of compounds with α-amino-β-mercapto-ethane group in protection of human serum albumin carbonylation and cross-linking with methylglyoxal.
    Aćimović JM; Penezić AZ; Pavićević ID; Jovanović VB; Mandić LM
    Mol Biosyst; 2014 Aug; 10(8):2166-75. PubMed ID: 24899390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal.
    Doorn JA; Petersen DR
    Chem Biol Interact; 2003 Feb; 143-144():93-100. PubMed ID: 12604193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection.
    Biaglow JE; Issels RW; Gerweck LE; Varnes ME; Jacobson B; Mitchell JB; Russo A
    Radiat Res; 1984 Nov; 100(2):298-312. PubMed ID: 6093188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanism of the reaction between 3-deoxyhexosulose and thiols.
    Edwards AS; Wedzicha BL
    Food Addit Contam; 1992; 9(5):461-9. PubMed ID: 1298650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the Reactivity of Trapping Reagents toward Electrophiles: Cysteine Derivatives Can Be Bifunctional Trapping Reagents.
    Inoue K; Fukuda K; Yoshimura T; Kusano K
    Chem Res Toxicol; 2015 Aug; 28(8):1546-55. PubMed ID: 26172216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols.
    Goldstein S; Samuni A; Merenyi G
    J Phys Chem A; 2008 Sep; 112(37):8600-5. PubMed ID: 18729428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configuration of thiols dictates their ability to promote iron-induced reactive oxygen species generation.
    Yang EY; Campbell A; Bondy SC
    Redox Rep; 2000; 5(6):371-5. PubMed ID: 11140748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity and directionality of thiol effects on sinusoidal glutathione transport in rat liver.
    Lu SC; Kuhlenkamp J; Ge JL; Sun WM; Kaplowitz N
    Mol Pharmacol; 1994 Sep; 46(3):578-85. PubMed ID: 7935341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor rejection in experimental animals treated with radioprotective thiols.
    Apffel CA; Walker JE; Issarescu S
    Cancer Res; 1975 Feb; 35(2):429-37. PubMed ID: 234035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between phosphorylated histone H2AX formation and cell survival in human microvascular endothelial cells (HMEC) as a function of ionizing radiation exposure in the presence or absence of thiol-containing drugs.
    Kataoka Y; Murley JS; Baker KL; Grdina DJ
    Radiat Res; 2007 Jul; 168(1):106-14. PubMed ID: 17723002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between reactive oxygen species and sulfhydryl groups of cysteine, acetylcysteine and glutathione.
    Robak J; Gryglewski RJ
    Pol J Pharmacol; 1995; 47(1):59-62. PubMed ID: 7550550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects of thiol compounds on theaflavin browning and structural analysis of the causative substances.
    Narai-Kanayama A; Chiku K; Ono H; Momoi T; Hiwatashi-Kanno M; Kobayashi A; Matsuda H; Yoshida M; Nakayama T
    Food Chem; 2022 Aug; 384():132488. PubMed ID: 35193023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the formation of Michael adducts from reactions of (E,E)-muconaldehyde with glutathione and other thiols.
    Henderson AP; Bleasdale C; Delaney K; Lindstrom AB; Rappaport SM; Waidyanatha S; Watson WP; Golding BT
    Bioorg Chem; 2005 Oct; 33(5):363-73. PubMed ID: 16005934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of N-acetylcysteine and dithiothreitol on glutathione and protein thiol replenishment during acetaminophen-induced toxicity in isolated mouse hepatocytes.
    Rafeiro E; Barr SG; Harrison JJ; Racz WJ
    Toxicology; 1994 Nov; 93(2-3):209-24. PubMed ID: 7974515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of tributyltin mediated hemolysis by mercapto compounds.
    Gray BH; Porvaznik M; Lee LH; Flemming C
    J Appl Toxicol; 1986 Oct; 6(5):363-70. PubMed ID: 3772013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase reactivation by thiol compounds.
    Miyada DS; Dinovo EC; Nakamura RM
    Clin Chim Acta; 1975 Jan; 58(2):97-9. PubMed ID: 1122642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological thiols as promoters of glutathione oxidation and modifying agents in protein S-thiolation.
    Del Corso A; Vilardo PG; Cappiello M; Cecconi I; Dal Monte M; Barsacchi D; Mura U
    Arch Biochem Biophys; 2002 Jan; 397(2):392-8. PubMed ID: 11795899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.