These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7869131)

  • 21. Molecular interactions of surface protein peptides of Streptococcus gordonii with human salivary components.
    Hamada T; Kawashima M; Watanabe H; Tagami J; Senpuku H
    Infect Immun; 2004 Aug; 72(8):4819-26. PubMed ID: 15271944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coaggregation of oral lactobacilli with streptococci from the oral cavity.
    Willcox MD; Patrikakis M; Harty DW; Loo CY; Knox KW
    Oral Microbiol Immunol; 1993 Oct; 8(5):319-21. PubMed ID: 8265207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of calcium ions on cell surface electrostatics of Bacteroides gingivalis and other oral bacteria.
    Yamashita Y; Kunimori A; Takehara T
    Zentralbl Bakteriol; 1991 Apr; 275(1):46-53. PubMed ID: 1930564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specificity of utilization of human salivary proteins for growth by oral streptococci.
    Cowman RA; Schaefer SJ; Fitzgerald RJ
    Caries Res; 1979; 13(4):181-9. PubMed ID: 287558
    [No Abstract]   [Full Text] [Related]  

  • 25. Stress as a determinant of saliva-mediated adherence and coadherence of oral and nonoral microorganisms.
    Bosch JA; Turkenburg M; Nazmi K; Veerman EC; de Geus EJ; Nieuw Amerongen AV
    Psychosom Med; 2003; 65(4):604-12. PubMed ID: 12883111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of adsorption on the acid production of caries and noncaries-producing streptococci.
    Berry CW; Henry CA
    J Dent Res; 1977 Oct; 56(10):1193-1200. PubMed ID: 272380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An in vitro model for studying adsorption of oral streptococci to crown and bridge cements.
    Orstavik J; Orstavik D
    J Oral Rehabil; 1980 Jan; 7(1):43-50. PubMed ID: 6928441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Longitudinal study of relations between human salivary antimicrobial proteins and measures of dental plaque accumulation and composition.
    Rudney JD; Krig MA; Neuvar EK
    Arch Oral Biol; 1993 May; 38(5):377-86. PubMed ID: 8392324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absence of capsule reveals glycan-mediated binding and recognition of salivary mucin MUC7 by Streptococcus pneumoniae.
    Thamadilok S; Roche-Håkansson H; Håkansson AP; Ruhl S
    Mol Oral Microbiol; 2016 Apr; 31(2):175-88. PubMed ID: 26172471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell surface proteins of oral streptococci.
    Appelbaum B; Rosan B
    Infect Immun; 1984 Oct; 46(1):245-50. PubMed ID: 6480109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of binding of denatured salivary alpha-amylase to Streptococcus sanguis.
    Bergmann JE; Gülzow HJ
    Arch Oral Biol; 1995 Oct; 40(10):973-4. PubMed ID: 8526808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation.
    Keevil CW; Marsh PD; Ellwood DC
    J Bacteriol; 1984 Feb; 157(2):560-7. PubMed ID: 6693352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association of neuraminidase-sensitive receptors and putative hydrophobic interactions with high-affinity binding sites for Streptococcus sanguis C5 in salivary pellicles.
    Gibbons RJ; Etherden I; Moreno EC
    Infect Immun; 1983 Dec; 42(3):1006-12. PubMed ID: 6642656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strain differences in binding of parotid saliva basic glycoprotein by oral streptococci.
    Shibata S; Nakamura R; Tsunemitsu A; Misaki A
    J Dent Res; 1979 Oct; 58(10):2006-7. PubMed ID: 291626
    [No Abstract]   [Full Text] [Related]  

  • 35. The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free-energies.
    Pratt-Terpstra IH; Weerkamp AH; Busscher HJ
    J Dent Res; 1989 Mar; 68(3):463-7. PubMed ID: 2921388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofilm-specific surface properties and protein expression in oral Streptococcus sanguis.
    Black C; Allan I; Ford SK; Wilson M; McNab R
    Arch Oral Biol; 2004 Apr; 49(4):295-304. PubMed ID: 15003548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation.
    Okahashi N; Nakata M; Terao Y; Isoda R; Sakurai A; Sumitomo T; Yamaguchi M; Kimura RK; Oiki E; Kawabata S; Ooshima T
    Microb Pathog; 2011; 50(3-4):148-54. PubMed ID: 21238567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of sugar utilization in the oral bacteria Streptococcus salivarius and Streptococcus sanguis by the phosphoenolpyruvate: glucose phosphotransferase system.
    Vadeboncoeur C; Bourgeau G; Mayrand D; Trahan L
    Arch Oral Biol; 1983; 28(2):123-31. PubMed ID: 6575744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans.
    Kindblom C; Davies JR; Herzberg MC; Svensäter G; Wickström C
    Mol Oral Microbiol; 2012 Oct; 27(5):362-72. PubMed ID: 22958385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amylase-binding as a discriminator among oral streptococci.
    Douglas CW; Pease AA; Whiley RA
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):193-7. PubMed ID: 2323538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.