These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 7869378)
1. Intragenic domains of strand-specific repair in Escherichia coli. Kunala S; Brash DE J Mol Biol; 1995 Feb; 246(2):264-72. PubMed ID: 7869378 [TBL] [Abstract][Full Text] [Related]
2. Induction and repair of cyclobutane pyrimidine dimers in the Escherichia coli tRNA gene tyrT: Fis protein affects dimer induction in the control region and suppresses preferential repair in the coding region of the transcribed strand, except in a short region near the transcription start site. Li S; Waters R J Mol Biol; 1997 Aug; 271(1):31-46. PubMed ID: 9300053 [TBL] [Abstract][Full Text] [Related]
3. Transcription-modulated repair in Escherichia coli evident with UV-induced mutation spectra in supF. Li BH; Ebbert A; Bockrath R J Mol Biol; 1999 Nov; 294(1):35-48. PubMed ID: 10556027 [TBL] [Abstract][Full Text] [Related]
4. High resolution mapping of UV-induced photoproducts in the Escherichia coli lacI gene. Inefficient repair of the non-transcribed strand correlates with high mutation frequency. Chandrasekhar D; Van Houten B J Mol Biol; 1994 May; 238(3):319-32. PubMed ID: 8176728 [TBL] [Abstract][Full Text] [Related]
5. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus. Romano V; Napoli A; Salerno V; Valenti A; Rossi M; Ciaramella M J Mol Biol; 2007 Jan; 365(4):921-9. PubMed ID: 17113105 [TBL] [Abstract][Full Text] [Related]
6. Characterisation of the Escherichia coli mfd promoter. Stanley LK; Savery NJ Arch Microbiol; 2003 May; 179(5):381-5. PubMed ID: 12658334 [TBL] [Abstract][Full Text] [Related]
7. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Mellon I; Hanawalt PC Nature; 1989 Nov; 342(6245):95-8. PubMed ID: 2554145 [TBL] [Abstract][Full Text] [Related]
8. Excision repair at individual bases of the Escherichia coli lacI gene: relation to mutation hot spots and transcription coupling activity. Kunala S; Brash DE Proc Natl Acad Sci U S A; 1992 Nov; 89(22):11031-5. PubMed ID: 1438309 [TBL] [Abstract][Full Text] [Related]
9. RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Smith AJ; Savery NJ Nucleic Acids Res; 2005; 33(2):755-64. PubMed ID: 15687384 [TBL] [Abstract][Full Text] [Related]
10. Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination. Roberts J; Park JS Curr Opin Microbiol; 2004 Apr; 7(2):120-5. PubMed ID: 15063847 [TBL] [Abstract][Full Text] [Related]
11. Excision repair at the level of the nucleotide in the Saccharomyces cerevisiae MFA2 gene: mapping of where enhanced repair in the transcribed strand begins or ends and identification of only a partial rad16 requisite for repairing upstream control sequences. Teng Y; Li S; Waters R; Reed SH J Mol Biol; 1997 Mar; 267(2):324-37. PubMed ID: 9096229 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs. Assenmacher N; Wenig K; Lammens A; Hopfner KP J Mol Biol; 2006 Jan; 355(4):675-83. PubMed ID: 16309703 [TBL] [Abstract][Full Text] [Related]
13. The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination. Ayora S; Rojo F; Ogasawara N; Nakai S; Alonso JC J Mol Biol; 1996 Feb; 256(2):301-18. PubMed ID: 8594198 [TBL] [Abstract][Full Text] [Related]
14. DNA repair in a protein-DNA complex: searching for the key to get in. Kwon Y; Smerdon MJ Mutat Res; 2005 Sep; 577(1-2):118-30. PubMed ID: 15913668 [TBL] [Abstract][Full Text] [Related]
15. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra. Vreeswijk MP; Meijers CM; Giphart-Gassler M; Vrieling H; van Zeeland AA; Mullenders LH; Loenen WA Mutat Res; 2009 Apr; 663(1-2):7-14. PubMed ID: 19150617 [TBL] [Abstract][Full Text] [Related]
16. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707 [TBL] [Abstract][Full Text] [Related]
17. The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene. Teng Y; Yu Y; Waters R J Mol Biol; 2002 Feb; 316(3):489-99. PubMed ID: 11866513 [TBL] [Abstract][Full Text] [Related]
18. Transcription promotes guanine to thymine mutations in the non-transcribed strand of an Escherichia coli gene. Klapacz J; Bhagwat AS DNA Repair (Amst); 2005 Jul; 4(7):806-13. PubMed ID: 15961353 [TBL] [Abstract][Full Text] [Related]
19. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Mellon I; Champe GN Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1292-7. PubMed ID: 8577757 [TBL] [Abstract][Full Text] [Related]
20. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. Wellinger RE; Thoma F EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]