These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 7869382)

  • 1. The mechanism of protein crystal growth from lipid layers.
    Hemming SA; Bochkarev A; Darst SA; Kornberg RD; Ala P; Yang DS; Edwards AM
    J Mol Biol; 1995 Feb; 246(2):308-16. PubMed ID: 7869382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional protein crystals on a solid substrate: effect of surface ligand concentration.
    Lou C; Wang Z; Wang SW
    Langmuir; 2007 Sep; 23(19):9752-9. PubMed ID: 17691830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D crystallization of membrane proteins: rationales and examples.
    Hasler L; Heymann JB; Engel A; Kistler J; Walz T
    J Struct Biol; 1998; 121(2):162-71. PubMed ID: 9615435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural consequences of hen egg-white lysozyme orthorhombic crystal growth in a high magnetic field: validation of X-ray diffraction intensity, conformational energy searching and quantitative analysis of B factors and mosaicity.
    Saijo S; Yamada Y; Sato T; Tanaka N; Matsui T; Sazaki G; Nakajima K; Matsuura Y
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):207-17. PubMed ID: 15735330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization and preliminary X-ray crystallographic analysis of ImmE7 protein of colicin E7.
    Ku WY; Wang CS; Chen CY; Chak KF; Safo MK; Yuan HS
    Proteins; 1995 Dec; 23(4):588-90. PubMed ID: 8749855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular impurities and disorder in protein crystals.
    Caylor CL; Dobrianov I; Lemay SG; Kimmer C; Kriminski S; Finkelstein KD; Zipfel W; Webb WW; Thomas BR; Chernov AA; Thorne RE
    Proteins; 1999 Aug; 36(3):270-81. PubMed ID: 10409821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human erythrocyte catalase: 2-D crystal nucleation and production of multiple crystal forms.
    Harris JR; Holzenburg A
    J Struct Biol; 1995; 115(1):102-12. PubMed ID: 7577227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the three-dimensional structures of a human Bence-Jones dimer crystallized on Earth and aboard US Space Shuttle Mission STS-95.
    Terzyan SS; Bourne CR; Ramsland PA; Bourne PC; Edmundson AB
    J Mol Recognit; 2003; 16(2):83-90. PubMed ID: 12720277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous nucleation of three-dimensional protein nanocrystals.
    Georgieva DG; Kuil ME; Oosterkamp TH; Zandbergen HW; Abrahams JP
    Acta Crystallogr D Biol Crystallogr; 2007 May; 63(Pt 5):564-70. PubMed ID: 17452781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary analysis of two and three dimensional crystals of vault ribonucleoprotein particles.
    Querol-Audí J; Perez-Luque R; Fita I; Lopéz-Iglesias C; Castón JR; Carrascosa JL; Verdaguer N
    J Struct Biol; 2005 Jul; 151(1):111-5. PubMed ID: 15964767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional assembly of pentameric rabbit C-reactive proteins on lipid monolayers.
    Wang HW; Sui S
    J Struct Biol; 2001 Apr; 134(1):46-55. PubMed ID: 11469876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform.
    Talreja S; Kenis PJ; Zukoski CF
    Langmuir; 2007 Apr; 23(8):4516-22. PubMed ID: 17367178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous silicon: an effective nucleation-inducing material for protein crystallization.
    Chayen NE; Saridakis E; El-Bahar R; Nemirovsky Y
    J Mol Biol; 2001 Sep; 312(4):591-5. PubMed ID: 11575916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crucial steps in the structure determination of the Na+/H+ antiporter NhaA in its native conformation.
    Screpanti E; Padan E; Rimon A; Michel H; Hunte C
    J Mol Biol; 2006 Sep; 362(2):192-202. PubMed ID: 16919297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular self-assembly of solid-supported protein crystals.
    Lou C; Shindel M; Graham L; Wang SW
    Langmuir; 2008 Aug; 24(15):8111-8. PubMed ID: 18605704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology.
    Vergara A; Lorber B; Sauter C; Giegé R; Zagari A
    Biophys Chem; 2005 Dec; 118(2-3):102-12. PubMed ID: 16150532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules.
    Darst SA; Ahlers M; Meller PH; Kubalek EW; Blankenburg R; Ribi HO; Ringsdorf H; Kornberg RD
    Biophys J; 1991 Feb; 59(2):387-96. PubMed ID: 1901232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein crystal growth and the International Space Station.
    DeLucas LJ; Moore KM; Long MM
    Gravit Space Biol Bull; 1999 May; 12(2):39-45. PubMed ID: 11541781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of Acanthamoeba myosin-II minifilaments. Model of anti-parallel dimers based on EM and X-ray diffraction of 2D and 3D crystals.
    Turbedsky K; Pollard TD; Yeager M
    J Mol Biol; 2005 Jan; 345(2):363-73. PubMed ID: 15571728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.