These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7869718)

  • 1. A biphasic poroelastic analysis of the flow dependent subcutaneous tissue pressure and compaction due to epidermal loadings: issues in pressure sore.
    Mak AF; Huang L; Wang Q
    J Biomech Eng; 1994 Nov; 116(4):421-9. PubMed ID: 7869718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression.
    Holmes MH
    J Biomech Eng; 1986 Nov; 108(4):372-81. PubMed ID: 3795885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-induced deformation of poroelastic tissues and gels: a new perspective on equilibrium pressure-flow-thickness relations.
    Quinn TM
    J Biomech Eng; 2013 Jan; 135(1):011009. PubMed ID: 23363220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The measurement of interface pressure and its role in soft tissue breakdown.
    Swain ID; Bader DL
    J Tissue Viability; 2002 Oct; 12(4):132-4, 136-7, 140-6. PubMed ID: 12476502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in-depth look at pressure sores using monolithic silicon pressure sensors.
    Le KM; Madsen BL; Barth PW; Ksander GA; Angell JB; Vistnes LM
    Plast Reconstr Surg; 1984 Dec; 74(6):745-56. PubMed ID: 6505095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
    Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE
    Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Tissue tolerance and the risk of decubitus].
    Defloor T
    Verpleegkunde; 1996 Aug; 11(3):131-42. PubMed ID: 9516812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Definitions of the physical properties of pressure ulcers and characterisation of their regional variance.
    Mizokami F; Furuta K; Utani A; Isogai Z
    Int Wound J; 2013 Oct; 10(5):606-11. PubMed ID: 22781056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using ultrasound elastography to monitor human soft tissue behaviour during prolonged loading: A clinical explorative study.
    Schäfer G; Dobos G; Lünnemann L; Blume-Peytavi U; Fischer T; Kottner J
    J Tissue Viability; 2015 Nov; 24(4):165-72. PubMed ID: 26165202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of fluid hydrostatic pressure in bone-implant interface load transfer.
    Lewis JL; Keller C; Stulberg SD; Steege J; Santare M
    Ann Biomed Eng; 1984; 12(6):559-71. PubMed ID: 6534223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences?
    Oomens CW; Bressers OF; Bosboom EM; Bouten CV; Blader DL
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):171-80. PubMed ID: 12888429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compound sensor for biomechanical analyses of buttock soft tissue in vivo.
    Wang J; Brienza DM; Yuan Y; Karg P; Xue Q
    J Rehabil Res Dev; 2000; 37(4):433-43. PubMed ID: 11028699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The risk of pressure sores: a conceptual scheme.
    Defloor T
    J Clin Nurs; 1999 Mar; 8(2):206-16. PubMed ID: 10401354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a pressure sore model using monoplegic pigs.
    Hyodo A; Reger SI; Negami S; Kambic H; Reyes E; Browne EZ
    Plast Reconstr Surg; 1995 Aug; 96(2):421-8. PubMed ID: 7624417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology.
    Ehret AE; Bircher K; Stracuzzi A; Marina V; Zündel M; Mazza E
    Nat Commun; 2017 Oct; 8(1):1002. PubMed ID: 29042539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanobiology of soft skeletal tissue differentiation--a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications.
    Loboa EG; Wren TA; Beaupré GS; Carter DR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):83-96. PubMed ID: 14586808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive relations for pressure-driven stiffening in poroelastic tissues.
    Reeve AM; Nash MP; Taberner AJ; Nielsen PM
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24828684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a coverlet system for the management of skin microclimate.
    Collier M; Potts C; Shaw E
    Br J Nurs; 2014 Aug; 23(15):S28, S30-5. PubMed ID: 25117597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.