These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7869720)

  • 1. A scaling law for wall shear rate through an arterial stenosis.
    Siegel JM; Markou CP; Ku DN; Hanson SR
    J Biomech Eng; 1994 Nov; 116(4):446-51. PubMed ID: 7869720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus.
    Bluestein D; Niu L; Schoephoerster RT; Dewanjee MK
    Ann Biomed Eng; 1997; 25(2):344-56. PubMed ID: 9084839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wall shear over high degree stenoses pertinent to atherothrombosis.
    Bark DL; Ku DN
    J Biomech; 2010 Nov; 43(15):2970-7. PubMed ID: 20728892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling laws for wall shear stress through stenoses under steady and pulsatile flow conditions.
    Chua IP; Yu SC; Xue Q
    Proc Inst Mech Eng H; 2001; 215(5):503-14. PubMed ID: 11726051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes.
    Tang D; Yang J; Yang C; Ku DN
    J Biomech Eng; 1999 Oct; 121(5):494-501. PubMed ID: 10529916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled fluid-wall modelling of steady flow in stenotic carotid arteries.
    Yakhshi-Tafti E; Tafazzoli-Shadpour M; Alavi SH; Mojra A
    J Med Eng Technol; 2009; 33(7):544-50. PubMed ID: 19591048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition.
    Bluestein D; Gutierrez C; Londono M; Schoephoerster RT
    Ann Biomed Eng; 1999; 27(6):763-73. PubMed ID: 10625149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow.
    Nosovitsky VA; Ilegbusi OJ; Jiang J; Stone PH; Feldman CL
    Comput Biomed Res; 1997 Feb; 30(1):61-82. PubMed ID: 9134307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hemodynamic effects of in-tandem carotid artery stenosis: implications for carotid endarterectomy.
    Li ZY; Taviani V; Tang T; Sutcliffe MP; Gillard JH
    J Stroke Cerebrovasc Dis; 2010 Mar; 19(2):138-45. PubMed ID: 20189090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A perfusion chamber developed to investigate thrombus formation and shear profiles in flowing native human blood at the apex of well-defined stenoses.
    Barstad RM; Roald HE; Cui Y; Turitto VT; Sakariassen KS
    Arterioscler Thromb; 1994 Dec; 14(12):1984-91. PubMed ID: 7981189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions.
    Shanmugavelayudam SK; Rubenstein DA; Yin W
    J Biomech Eng; 2010 Jun; 132(6):061004. PubMed ID: 20887029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition.
    Bluestein D; Niu L; Schoephoerster RT; Dewanjee MK
    J Biomech Eng; 1996 Aug; 118(3):280-6. PubMed ID: 8872248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of stenosis rate and Reynolds number on local flow characteristics and plaque formation around the atherosclerotic stenosis.
    Chen X; Zhan Y; Fu YI; Lin J; Ji Y; Zhao C; Fang Y; Wu J
    Acta Bioeng Biomech; 2021; 23(1):135-147. PubMed ID: 34846030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Influences of Stenoses in Right Carotid Artery on Left Carotid Artery Using Wall Stress Marker.
    Bit A; Ghagare D; Rizvanov AA; Chattopadhyay H
    Biomed Res Int; 2017; 2017():2935195. PubMed ID: 28191460
    [No Abstract]   [Full Text] [Related]  

  • 17. [Blood and arterial wall rheology and cardiovascular risk factors].
    Levenson J; Del-Pino M; Simon A
    J Mal Vasc; 2000 Oct; 25(4):237-40. PubMed ID: 11060417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path-dependent hemodynamics of the stenosed carotid bifurcation.
    Tambasco M; Steinman DA
    Ann Biomed Eng; 2003 Oct; 31(9):1054-65. PubMed ID: 14582608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries.
    Cao J; Rittgers SE
    Ann Biomed Eng; 1998; 26(2):190-9. PubMed ID: 9525760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of wall shear stress-based descriptors in the human left coronary artery.
    Pinto SI; Campos JB
    Comput Methods Biomech Biomed Engin; 2016 Oct; 19(13):1443-55. PubMed ID: 26883291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.