These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7869722)

  • 61. Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves.
    Girod G; Jaussi A; Rosset C; De Werra P; Hirt F; Kappenberger L
    Echocardiography; 2002 Oct; 19(7 Pt 1):531-6. PubMed ID: 12376004
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Indication of cavitation in mechanical heart valve patients.
    Andersen TS; Johansen P; Paulsen PK; Nygaard H; Hasenkam JM
    J Heart Valve Dis; 2003 Nov; 12(6):790-6. PubMed ID: 14658822
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing.
    Lee H; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2010 Apr; 13(1):17-23. PubMed ID: 20155293
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
    Makhijani VB; Yang HQ; Singhal AK; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S35-44; discussion S44-8. PubMed ID: 8061869
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.
    Lo CW; Liu JS; Li CP; Lu PC; Hwang NH
    ASAIO J; 2008; 54(2):163-71. PubMed ID: 18356649
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Can cavitation bubbles generated by mechanical heart valves be detected by transcranial Doppler?
    Shu MC; Gross JM; Johnson KM
    J Heart Valve Dis; 1995 Sep; 4(5):542-52; discussion 552. PubMed ID: 8581199
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A physical model describing the mechanism for formation of gas microbubbles in patients with mitral mechanical heart valves.
    Rambod E; Beizaie M; Shusser M; Milo S; Gharib M
    Ann Biomed Eng; 1999; 27(6):774-92. PubMed ID: 10625150
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
    Medvitz RB; Kreider JW; Manning KB; Fontaine AA; Deutsch S; Paterson EG
    ASAIO J; 2007; 53(2):122-31. PubMed ID: 17413548
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Asynchronous closure and leaflet impact velocity of bileaflet mechanical heart valves.
    Wu ZJ; Hwang NH
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S38-49. PubMed ID: 8581210
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A temporal and spatial analysis of cavitation on mechanical heart valves by observing faint light emission.
    Takiura K; Chinzei T; Abe Y; Isoyama T; Saito I; Mochizuki S; Imachi K
    ASAIO J; 2004; 50(3):285-90. PubMed ID: 15171483
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Numerical study of squeeze-flow in tilting disc mechanical heart valves.
    Makhijani VB; Siegel JM; Hwang NH
    J Heart Valve Dis; 1996 Jan; 5(1):97-103. PubMed ID: 8834732
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dynamics of a mechanical monoleaflet heart valve prosthesis in the closing phase: effect of squeeze film.
    Gill-Jeong C; Chandran KB
    Ann Biomed Eng; 1995; 23(2):189-97. PubMed ID: 7605055
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Origin and appearance of HITS induced by prosthetic heart valves: an in vitro study.
    Potthast K; Erdönmez G; Schnelke C; Sellin L; Sliwka U; Schöndube F; Eichler M; Reul H
    Int J Artif Organs; 2000 Jul; 23(7):441-5. PubMed ID: 10941637
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanism for cavitation of monoleaflet and bileaflet valves in an artificial heart.
    Lee H; Tatsumi E; Homma A; Tsukiya T; Taenaka Y
    J Artif Organs; 2006; 9(3):154-60. PubMed ID: 16998700
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Turbulence characteristics downstream of a new trileaflet mechanical heart valve.
    Li CP; Chen SF; Lo CW; Lu PC
    ASAIO J; 2011; 57(3):188-96. PubMed ID: 21499078
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Usefulness of magnetic resonance imaging for managing patients with prosthetic carbon valve in the mitral position].
    Koito H; Imai Y; Suzuki J; Ohkubo N; Nakamura C; Takahashi H; Iwasaka T; Inada M
    J Cardiol; 1997 Nov; 30(5):251-63. PubMed ID: 9395956
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Intraoperative and postoperative evaluation of cavitation in mechanical heart valve patients.
    Andersen TS; Johansen P; Christensen BO; Paulsen PK; Nygaard H; Hasenkam JM
    Ann Thorac Surg; 2006 Jan; 81(1):34-41. PubMed ID: 16368331
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ventricular assist device in patients with prosthetic heart valves.
    Mokashi SA; Schmitto JD; Lee LS; Rawn JD; Bolman RM; Shekar PS; Couper GS; Chen FY
    Artif Organs; 2010 Nov; 34(11):1030-4. PubMed ID: 21137108
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The hemodynamic effects of mechanical prosthetic valve type and orientation on fluid mechanical energy loss and pressure drop in in vitro models of ventricular hypertrophy.
    Travis BR; Heinrich RS; Ensley AE; Gibson DE; Hashim S; Yoganathan AP
    J Heart Valve Dis; 1998 May; 7(3):345-54. PubMed ID: 9651851
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Squeeze flow measurements in mechanical heart valves.
    Lo CW; Lu PC; Liu JS; Li CP; Hwang NH
    ASAIO J; 2008; 54(2):156-62. PubMed ID: 18356648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.