These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7869722)

  • 81. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves.
    Carey RF; Porter JM; Richard G; Luck C; Shu MC; Guo GX; Elizondo DR; Kingsbury C; Anderson S; Herman BA
    J Heart Valve Dis; 1995 Sep; 4(5):532-9; discussion 539-41. PubMed ID: 8581198
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Thrombectomy with disc rotation of medtronic valves.
    Kale SB; Saksena DS; Agnihotri YC; Ayyer KH
    Asian Cardiovasc Thorac Ann; 2003 Dec; 11(4):309-13. PubMed ID: 14681090
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Hydrodynamic characteristics of the Edwards MIRA bileaflet valve in a pneumatic ventricular assist device.
    Lee H; Taenaka Y
    ASAIO J; 2007; 53(4):397-402. PubMed ID: 17667221
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A protocol for the evaluation of the cavitation potential of mechanical heart valves.
    Herman BA; Carey RF
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S128-30; discussion S130-2. PubMed ID: 8061866
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Comparative results with the St. Jude Medical and Medtronic Hall mechanical valves.
    Masters RG; Pipe AL; Walley VM; Keon WJ
    J Thorac Cardiovasc Surg; 1995 Sep; 110(3):663-71. PubMed ID: 7564432
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A proposal for a theory and detection method of cavitation potential of mitral bileaflet heart valve.
    Zhang Z; Ye CX; Wang YS
    Artif Organs; 1995 Sep; 19(9):952-4. PubMed ID: 8687305
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Hemolytic potential of hydrodynamic cavitation.
    Chambers SD; Bartlett RH; Ceccio SL
    J Biomech Eng; 2000 Aug; 122(4):321-6. PubMed ID: 11036554
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A new approach to detection of the cavitation on mechanical heart valves.
    Takiura K; Chinzei T; Abe Y; Isoyama T; Saito I; Ozeki T; Imachi K
    ASAIO J; 2003; 49(3):304-8. PubMed ID: 12790381
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Statistical correlation between transient pressure drop and cavitation at closure of a mechanical heart valve.
    Wu C; Liu JS; Hwang NH; Lin YK
    ASAIO J; 2005; 51(1):11-6. PubMed ID: 15745127
    [TBL] [Abstract][Full Text] [Related]  

  • 91. [Model fluids of blood for in vitro testing of artificial heart valves].
    Pohl M; Wendt MO; Koch B; Kühnel R; Samba O; Vlastos G
    Z Med Phys; 2001; 11(3):187-94. PubMed ID: 11668816
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A new method for evaluation of cavitation near mechanical heart valves.
    Johansen P; Manning KB; Tarbell JM; Fontaine AA; Deutsch S; Nygaard H
    J Biomech Eng; 2003 Oct; 125(5):663-70. PubMed ID: 14618925
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Pressure development within a sac-type pneumatically driven ventricular assist device.
    Jin W; Clark C
    J Biomech; 1994 Nov; 27(11):1319-29. PubMed ID: 7798282
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Modeling technique of prosthetic heart valves.
    Kitamura T; Kijima T; Akashi H
    J Biomech Eng; 1984 Feb; 106(1):83-8. PubMed ID: 6727319
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Misleading echocardiographic diagnosis of a prosthetic heart valve vegetation due to the cavitation phenomenon.
    Arias RS; Piñero-Uribe I; Carreras F; Pujadas S; Leta R; Pons-Lladó G
    Exp Clin Cardiol; 2009; 14(4):53-5. PubMed ID: 20198201
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evaluation the possibility of vortex-induced resonance for a multistage pressure reducing valve.
    Xu D; Ge C; Li Y; Liu Y
    PLoS One; 2022; 17(4):e0266414. PubMed ID: 35363803
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A Comparative Study of Cavitation Characteristics of Nano-fluid and Deionized Water in Micro-channels.
    Li T; Liu B; Zhou J; Xi W; Huai X; Zhang H
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32188128
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The Problem of Filling a Spherical Cavity in an Aqueous Solution of Polymers.
    Frolovskaya OA; Pukhnachev VV
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297837
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A method for real-time in vitro observation of cavitation on prosthetic heart valves.
    Zapanta CM; Liszka EG; Lamson TC; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Biomech Eng; 1994 Nov; 116(4):460-8. PubMed ID: 7869722
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Real-time in vitro observation of cavitation in a prosthetic heart valve.
    Lamson TC; Stinebring DR; Deutsch S; Rosenberg G; Tarbell JM
    ASAIO Trans; 1991; 37(3):M351-3. PubMed ID: 1751182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.