These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular biological assessment methods and understanding the course of the HIV infection. Katzenstein TL APMIS Suppl; 2003; (114):1-37. PubMed ID: 14626050 [TBL] [Abstract][Full Text] [Related]
3. Vaccine-induced T cells control reversion of AIDS virus immune escape mutants. Fernandez CS; Smith MZ; Batten CJ; De Rose R; Reece JC; Rollman E; Venturi V; Davenport MP; Kent SJ J Virol; 2007 Apr; 81(8):4137-44. PubMed ID: 17251297 [TBL] [Abstract][Full Text] [Related]
4. Strict conservation of the retroviral nucleocapsid protein zinc finger is strongly influenced by its role in viral infection processes: characterization of HIV-1 particles containing mutant nucleocapsid zinc-coordinating sequences. Gorelick RJ; Gagliardi TD; Bosche WJ; Wiltrout TA; Coren LV; Chabot DJ; Lifson JD; Henderson LE; Arthur LO Virology; 1999 Mar; 256(1):92-104. PubMed ID: 10087230 [TBL] [Abstract][Full Text] [Related]
5. Nucleocapsid protein zinc-finger mutants of simian immunodeficiency virus strain mne produce virions that are replication defective in vitro and in vivo. Gorelick RJ; Benveniste RE; Gagliardi TD; Wiltrout TA; Busch LK; Bosche WJ; Coren LV; Lifson JD; Bradley PJ; Henderson LE; Arthur LO Virology; 1999 Jan; 253(2):259-70. PubMed ID: 9918884 [TBL] [Abstract][Full Text] [Related]
6. The potential of various HIV-1 mutants to inhibit the replication of wild-type virus. Inubushi R; Shimano R; Oshima Y; Adachi A Biochem Biophys Res Commun; 1998 Jun; 247(2):349-52. PubMed ID: 9642129 [TBL] [Abstract][Full Text] [Related]
7. A condition for successful escape of a mutant after primary HIV infection. Monteiro LH; Gonçalves CH; Piqueira JR J Theor Biol; 2000 Apr; 203(4):399-406. PubMed ID: 10736216 [TBL] [Abstract][Full Text] [Related]
8. Loss of viral control in early HIV-1 infection is temporally associated with sequential escape from CD8+ T cell responses and decrease in HIV-1-specific CD4+ and CD8+ T cell frequencies. Oxenius A; Price DA; Trkola A; Edwards C; Gostick E; Zhang HT; Easterbrook PJ; Tun T; Johnson A; Waters A; Holmes EC; Phillips RE J Infect Dis; 2004 Aug; 190(4):713-21. PubMed ID: 15272399 [TBL] [Abstract][Full Text] [Related]
9. Intravirion generation of the C-terminal core domain of HIV-1 Nef by the HIV-1 protease is insufficient to enhance viral infectivity. Miller MD; Warmerdam MT; Ferrell SS; Benitez R; Greene WC Virology; 1997 Aug; 234(2):215-25. PubMed ID: 9268152 [TBL] [Abstract][Full Text] [Related]
10. Reversion of immune escape HIV variants upon transmission: insights into effective viral immunity. Kent SJ; Fernandez CS; Dale CJ; Davenport MP Trends Microbiol; 2005 Jun; 13(6):243-6. PubMed ID: 15936652 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of macrophage and T cell infection by HIV. Wodarz D; Lloyd AL; Jansen VA; Nowak MA J Theor Biol; 1999 Jan; 196(1):101-13. PubMed ID: 9892559 [TBL] [Abstract][Full Text] [Related]
12. Rates of HIV immune escape and reversion: implications for vaccination. Davenport MP; Loh L; Petravic J; Kent SJ Trends Microbiol; 2008 Dec; 16(12):561-6. PubMed ID: 18964018 [TBL] [Abstract][Full Text] [Related]
14. Study of the impact of HIV genotypic drug resistance testing on therapy efficacy. Van Vaerenbergh K Verh K Acad Geneeskd Belg; 2001; 63(5):447-73. PubMed ID: 11813503 [TBL] [Abstract][Full Text] [Related]
15. Waiting times for the appearance of cytotoxic T-lymphocyte escape mutants in chronic HIV-1 infection. Liu Y; Mullins JI; Mittler JE Virology; 2006 Mar; 347(1):140-6. PubMed ID: 16387340 [TBL] [Abstract][Full Text] [Related]
16. Molecular and functional analysis of a conserved CTL epitope in HIV-1 p24 recognized from a long-term nonprogressor: constraints on immune escape associated with targeting a sequence essential for viral replication. Wagner R; Leschonsky B; Harrer E; Paulus C; Weber C; Walker BD; Buchbinder S; Wolf H; Kalden JR; Harrer T J Immunol; 1999 Mar; 162(6):3727-34. PubMed ID: 10092836 [TBL] [Abstract][Full Text] [Related]
17. Cornering HIV: taking advantage of interactions between selective pressures. Avila-Ríos S; Reyes-Terán G; Espinosa E Med Hypotheses; 2007; 69(2):422-31. PubMed ID: 17280799 [TBL] [Abstract][Full Text] [Related]
18. Correlates of cytotoxic T-lymphocyte-mediated virus control: implications for immunosuppressive infections and their treatment. Wodarz D; Nowak MA Philos Trans R Soc Lond B Biol Sci; 2000 Aug; 355(1400):1059-70. PubMed ID: 11186307 [TBL] [Abstract][Full Text] [Related]
19. Modeling within-host evolution of HIV: mutation, competition and strain replacement. Ball CL; Gilchrist MA; Coombs D Bull Math Biol; 2007 Oct; 69(7):2361-85. PubMed ID: 17554585 [TBL] [Abstract][Full Text] [Related]
20. Human immunodeficiency virus pathogenesis: insights from studies of lymphoid cells and tissues. Kilby JM Clin Infect Dis; 2001 Sep; 33(6):873-84. PubMed ID: 11512093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]