BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7869861)

  • 1. Structural and functional role of lipids in yeast and mycelial forms of Candida albicans.
    Goyal S; Khuller GK
    Lipids; 1994 Nov; 29(11):793-7. PubMed ID: 7869861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lipid composition and permeability to the triazole antifungal antibiotic ICI 153066 of serum-grown mycelial cultures of Candida albicans.
    Hitchcock CA; Barrett-Bee KJ; Russell NJ
    J Gen Microbiol; 1989 Jul; 135(7):1949-55. PubMed ID: 2693607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid composition and subcellular distribution in yeast and mycelial forms of Candida albicans.
    Goyal S; Khuller GK
    J Med Vet Mycol; 1992; 30(5):355-62. PubMed ID: 1469536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of polar lipids from yeast and mycelial forms of Candida albicans and Candida dubliniensis.
    Mahmoudabadi AZ; Drucker DB
    Mycoses; 2006 Jan; 49(1):18-22. PubMed ID: 16367813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimorphism-associated variations in the lipid composition of Candida albicans.
    Ghannoum MA; Janini G; Khamis L; Radwan SS
    J Gen Microbiol; 1986 Aug; 132(8):2367-75. PubMed ID: 3540201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in lipid and sterol contents in Candida albicans white and opaque phenotypes.
    Ghannoum MA; Swairjo I; Soll DR
    J Med Vet Mycol; 1990; 28(2):103-15. PubMed ID: 2199656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Status of membrane lipids and amino acid transport in morphological mutants of Candida albicans.
    Koul A; Chandra J; Prasad R
    Biochem Mol Biol Int; 1995 May; 35(6):1215-22. PubMed ID: 7492959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sub-inhibitory concentration of chlorhexidine on lipid and sterol composition of Candida albicans.
    Abu-Elteen KH; Whittaker PA
    Mycopathologia; 1997-1998; 140(2):69-76. PubMed ID: 9646510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and chemical characterization of plasma membranes from the yeast and mycelial forms of Candida albicans.
    Marriott MS
    J Gen Microbiol; 1975 Jan; 86(1):115-32. PubMed ID: 1089750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of lipid composition on the sensitivity of Candida albicans to antifungal agents.
    Mago N; Khuller GK
    Indian J Biochem Biophys; 1989 Feb; 26(1):30-3. PubMed ID: 2673990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid composition of some yeast strains from Livingston Island, Antarctica.
    Zlatanov M; Pavlova K; Grigorova D
    Folia Microbiol (Praha); 2001; 46(5):402-6. PubMed ID: 11899472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the cellular composition of Candida albicans resistant to miconazole.
    Sharma S; Khuller GK
    Indian J Biochem Biophys; 1996 Oct; 33(5):420-4. PubMed ID: 9029825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans.
    Hitchcock CA; Barrett-Bee KJ; Russell NJ
    J Gen Microbiol; 1986 Sep; 132(9):2421-31. PubMed ID: 3540203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid composition of Paracoccidioides brasiliensis: comparison between the yeast and mycelial forms.
    Manocha MS
    Sabouraudia; 1980 Dec; 18(4):281-6. PubMed ID: 7455860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subinhibitory concentration of octenidine and pirtenidine: influence on the lipid and sterol contents of Candida albicans.
    Ghannoum MA; Moussa NM; Whittaker P; Swairjo I; Abu-Elteen KH
    Chemotherapy; 1992; 38(1):46-56. PubMed ID: 1618003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced antifungal activity of voriconazole-loaded nanostructured lipid carriers against
    Tian B; Yan Q; Wang J; Ding C; Sai S
    Int J Nanomedicine; 2017; 12():7131-7141. PubMed ID: 29026306
    [No Abstract]   [Full Text] [Related]  

  • 17. Proline uptake in Candida albicans.
    Dabrowa N; Howard DH
    J Gen Microbiol; 1981 Dec; 127(2):391-7. PubMed ID: 7045279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging role of lipids of Candida albicans, a pathogenic dimorphic yeast.
    Mishra P; Bolard J; Prasad R
    Biochim Biophys Acta; 1992 Jul; 1127(1):1-14. PubMed ID: 1627629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylserine decarboxylase governs plasma membrane fluidity and impacts drug susceptibilities of Candida albicans cells.
    Khandelwal NK; Sarkar P; Gaur NA; Chattopadhyay A; Prasad R
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2308-2319. PubMed ID: 29856993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid synthesis during reinitiation of growth from stationary phase cultures of Candida albicans.
    Ballmann GE; Caffin WL
    Mycopathologia; 1979 Mar; 67(1):39-43. PubMed ID: 377085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.