These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7870128)

  • 1. Photoaffinity labelling of Plasmodium falciparum proteins involved in phospholipid transport.
    Berman A; Shearing LN; Ng KF; Jinsart W; Foley M; Tilley L
    Mol Biochem Parasitol; 1994 Oct; 67(2):235-43. PubMed ID: 7870128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte band 7.2b is preferentially labeled by a photoreactive phospholipid.
    Desneves J; Berman A; Dynon K; La Greca N; Foley M; Tilley L
    Biochem Biophys Res Commun; 1996 Jul; 224(1):108-14. PubMed ID: 8694796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells.
    Haldar K; de Amorim AF; Cross GA
    J Cell Biol; 1989 Jun; 108(6):2183-92. PubMed ID: 2661561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trafficking of malarial proteins to the host cell cytoplasm and erythrocyte surface membrane involves multiple pathways.
    Gormley JA; Howard RJ; Taraschi TF
    J Cell Biol; 1992 Dec; 119(6):1481-95. PubMed ID: 1469045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes.
    Haldar K; Uyetake L
    Mol Biochem Parasitol; 1992 Jan; 50(1):161-77. PubMed ID: 1371847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoaffinity labeling of mefloquine-binding proteins in human serum, uninfected erythrocytes and Plasmodium falciparum-infected erythrocytes.
    Desneves J; Thorn G; Berman A; Galatis D; La Greca N; Sinding J; Foley M; Deady LW; Cowman AF; Tilley L
    Mol Biochem Parasitol; 1996 Nov; 82(2):181-94. PubMed ID: 8946384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced glycerol incorporation into phospholipids contributes to impaired intra-erythrocytic growth of glycerol kinase knockout Plasmodium falciparum parasites.
    Naidoo K; Coetzer TL
    Biochim Biophys Acta; 2013 Nov; 1830(11):5326-34. PubMed ID: 23954205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a Plasmodium falciparum phospholipid transfer protein.
    van Ooij C; Withers-Martinez C; Ringel A; Cockcroft S; Haldar K; Blackman MJ
    J Biol Chem; 2013 Nov; 288(44):31971-83. PubMed ID: 24043620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoaffinity labeling of chloroquine-binding proteins in Plasmodium falciparum.
    Foley M; Deady LW; Ng K; Cowman AF; Tilley L
    J Biol Chem; 1994 Mar; 269(9):6955-61. PubMed ID: 8120058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis, export and processing of a 45 kDa protein detected in membrane clefts of erythrocytes infected with Plasmodium falciparum.
    Das A; Elmendorf HG; Li WI; Haldar K
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):487-96. PubMed ID: 8093001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes.
    Albano FR; Berman A; La Greca N; Hibbs AR; Wickham M; Foley M; Tilley L
    Eur J Cell Biol; 1999 Jul; 78(7):453-62. PubMed ID: 10472798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Plasmodium falciparum cytoadherence-linked asexual protein 3 (CLAG 3) sequences that specifically bind to C32 cells and erythrocytes.
    Ocampo M; Rodríguez LE; Curtidor H; Puentes A; Vera R; Valbuena JJ; López R; García JE; Ramírez LE; Torres E; Cortes J; Tovar D; López Y; Patarroyo MA; Patarroyo ME
    Protein Sci; 2005 Feb; 14(2):504-13. PubMed ID: 15659379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmodium falciparum: a molecular view of protein transport from the parasite into the host erythrocyte.
    Lingelbach KR
    Exp Parasitol; 1993 May; 76(3):318-27. PubMed ID: 8500591
    [No Abstract]   [Full Text] [Related]  

  • 14. Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes.
    El Tahir A; Malhotra P; Chauhan VS
    Malar J; 2003 May; 2():11. PubMed ID: 12801422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein targeting from malaria parasites to host erythrocytes.
    Römisch K
    Traffic; 2005 Aug; 6(8):706-9. PubMed ID: 15998325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.
    Elabbadi N; Ancelin ML; Vial HJ
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):435-45. PubMed ID: 9182701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide binding properties of a P-glycoprotein homologue from Plasmodium falciparum.
    Karcz SR; Galatis D; Cowman AF
    Mol Biochem Parasitol; 1993 Apr; 58(2):269-76. PubMed ID: 8097560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein trafficking in the Plasmodium-falciparum-infected erythrocyte--from models to mechanisms.
    Lingelbach K
    Ann Trop Med Parasitol; 1997 Jul; 91(5):543-9. PubMed ID: 9329991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The accumulation and metabolism of a fluorescent ceramide derivative in Plasmodium falciparum-infected erythrocytes.
    Haldar K; Uyetake L; Ghori N; Elmendorf HG; Li WL
    Mol Biochem Parasitol; 1991 Nov; 49(1):143-56. PubMed ID: 1775154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in erythrocyte membrane phospholipid organization due to the intracellular growth of the human malaria parasite, Plasmodium falciparum.
    Maguire PA; Prudhomme J; Sherman IW
    Parasitology; 1991 Apr; 102 Pt 2():179-86. PubMed ID: 1852485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.