These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 78730)

  • 41. About some possible anti-inflammatory properties of various membrane permeant agents.
    Famaey JP; Whitehouse MW
    Agents Actions; 1975 May; 5(2):133-6. PubMed ID: 51578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of the mitochondrial respiratory chain by alkylhydroxynaphtoquines: reversal on discharge of the energized state.
    Howland JL; Lichtman JW; Settlemire CT
    Biochim Biophys Acta; 1973 Aug; 314(2):154-63. PubMed ID: 4126990
    [No Abstract]   [Full Text] [Related]  

  • 43. Respiratory control and the proton electrochemical gradient in mitochondria.
    Padan E; Rottenberg H
    Eur J Biochem; 1973 Dec; 40(2):431-7. PubMed ID: 4131256
    [No Abstract]   [Full Text] [Related]  

  • 44. Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria.
    Brown GC; Brand MD
    Biochem J; 1986 Feb; 234(1):75-81. PubMed ID: 3010957
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and chemical requirements for hydroxychlorobiphenyls to uncouple rat liver mitochondria and potentiation of uncoupling with aroclor 1254.
    Ebner KV; Braselton WE
    Chem Biol Interact; 1987; 63(2):139-55. PubMed ID: 3117385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of monovalent cation ionophores on lymphocyte cellular metabolism.
    Arslan P; Montecucco C; Celi D; Pozzan T
    Biochim Biophys Acta; 1981 Apr; 643(1):177-81. PubMed ID: 6165389
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes as revealed by proteomics analysis of proteins released from mitochondria.
    Yamada A; Yamamoto T; Yamazaki N; Yamashita K; Kataoka M; Nagata T; Terada H; Shinohara Y
    Mol Cell Proteomics; 2009 Jun; 8(6):1265-77. PubMed ID: 19218587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of respiration on the permeability of the mitochondrial membrane to ions.
    Luvisetto S; Schemehl I; Canton M; Azzone GF
    Biochim Biophys Acta; 1994 Jun; 1186(1-2):12-8. PubMed ID: 8011661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondrial oscillation and activation of H+/cation exchange.
    Bernardi P; Pozzan M; Azzone GF
    J Bioenerg Biomembr; 1982 Dec; 14(5-6):387-403. PubMed ID: 6298197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Solubilization of cytochrome c in ischemic liver tissue].
    Knyazeva TA; Malyugin EF; Zarinskaya SA; Archakov AI
    Vopr Med Khim; 1975; 21(5):481-5. PubMed ID: 175568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effect of valinomycin and nonactin on monovalent cation transport in mitochondria].
    Skul'skiĭ IA; Glazunov VV
    Tsitologiia; 1982 Feb; 24(2):183-7. PubMed ID: 6896103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The use of K+ concentration gradients for the synthesis of ATP by mitochondria.
    Cockrell RS; Pressman BC
    Methods Enzymol; 1979; 55():666-75. PubMed ID: 37406
    [No Abstract]   [Full Text] [Related]  

  • 53. Effects of chlordecone and its alteration products on isolated rat liver mitochondria.
    Soileau SD; Moreland DE
    Toxicol Appl Pharmacol; 1983 Jan; 67(1):89-99. PubMed ID: 6189267
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mechanism of energy-dependent ion transport in mitochondria.
    Rottenberg H
    J Membr Biol; 1973; 11(2):117-37. PubMed ID: 4131308
    [No Abstract]   [Full Text] [Related]  

  • 55. Site-dependent biological activity of valinomycin analogs bearing derivatizable hydroxyl sites.
    Annese C; Abbrescia DI; Catucci L; D'Accolti L; Denora N; Fanizza I; Fusco C; La Piana G
    J Pept Sci; 2013 Dec; 19(12):751-7. PubMed ID: 24129979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gramicidin, valinomycin, and cation permeability of Streptococcus faecalis.
    Harold FM; Baarda JR
    J Bacteriol; 1967 Jul; 94(1):53-60. PubMed ID: 4961416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of the energy state of mitochondria on the kinetics of unidirectional cation fluxes.
    Skulskii IA; Saris NE; Glasunov VV
    Arch Biochem Biophys; 1983 Oct; 226(1):337-46. PubMed ID: 6639057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The 2-(dimethylaminostyryl)-1-methylpyridinium cation as indicator of the mitochondrial membrane potential.
    Mewes HW; Rafael J
    FEBS Lett; 1981 Aug; 131(1):7-10. PubMed ID: 7286242
    [No Abstract]   [Full Text] [Related]  

  • 59. [Changes in the permeability of streptomycete cytoplasmic membranes due to gramicidin S and its derivatives].
    Bulgakova VG; Novozhilova TIu; Orlova TI; Polin AN
    Antibiot Med Biotekhnol; 1986 Jun; 31(6):411-6. PubMed ID: 2427019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of membrane potential on equilibrium poise between cytochrome a and cytochrome c in rat liver mitochondria.
    Hinkle P; Mitchell P
    J Bioenerg; 1970 Jun; 1(1):45-60. PubMed ID: 5527906
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.