These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 7873103)

  • 1. Utilization of some phenolic compounds by Azotobacter chroococcum and their effect on growth and nitrogenase activity.
    Abd-Alla MH
    Microbiologia; 1994 Sep; 10(3):273-8. PubMed ID: 7873103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid.
    Juarez B; Martinez-Toledo MV; Gonzalez-Lopez J
    Chemosphere; 2005 Jun; 59(9):1361-5. PubMed ID: 15857648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas chromatographic-mass spectrometric study of the degradation of phenolic compounds in wastewater olive oil by Azotobacter Chroococcum.
    Juárez MJ; Zafra-Gómez A; Luzón-Toro B; Ballesteros-García OA; Navalón A; González J; Vílchez JL
    Bioresour Technol; 2008 May; 99(7):2392-8. PubMed ID: 17624767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of amino acids by Azotobacter vinelandii and Azotobacter chroococcum with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions.
    Revillas JJ; Rodelas B; Pozo C; Martínez-Toledo MV; López JG
    Amino Acids; 2005 Jun; 28(4):421-5. PubMed ID: 15731884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum.
    Herter S; Schmidt M; Thompson ML; Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2011 May; 90(3):1037-49. PubMed ID: 21327414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of trifluralin on soil microbial populations and the nitrogen fixation activities.
    Hang M; Zhongyun C; Yuhua Z; Meichi C
    J Environ Sci Health B; 2001 Sep; 36(5):569-79. PubMed ID: 11599721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology of exopolysaccharide production by Azotobacter vinelandii from 4-hydroxybenzoic acid.
    Vargas-García MC; López MJ; Elorrieta MA; Suárez F; Moreno J
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):129-33. PubMed ID: 12242634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial decomposition of synthetic 14C-labeled lignin and lignin monomer derivatives.
    Gradziel K; Haider K; Kochmańska J; Malarczyk E; Trojanowski J
    Acta Microbiol Pol; 1978; 27(2):103-9. PubMed ID: 80922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for plasmid mediated dissimilation of catechol in Azotobacter chroococcum.
    Balajee S; Mahadevan A
    Indian J Exp Biol; 1990 Nov; 28(11):1082-3. PubMed ID: 2283176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of aromatic substances by Azotobacter chroococcum.
    Balajee S; Mahadevan A
    Res Microbiol; 1990 Jun; 141(5):577-84. PubMed ID: 2218062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid media in the presence of perfluorocarbons].
    Bakulin MK; Grudtsyna AS; Pletneva AIu
    Prikl Biokhim Mikrobiol; 2007; 43(4):443-9. PubMed ID: 17929572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of lyophilization on the nitrogenase activity of Azotobacter vinelandii].
    Gogotov IN; Arkad'eva ZA
    Mikrobiologiia; 1975; 44(3):534-7. PubMed ID: 1160659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vanadium-iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor.
    Smith BE; Eady RR; Lowe DJ; Gormal C
    Biochem J; 1988 Feb; 250(1):299-302. PubMed ID: 2833236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular degradation of poly(3-hydroxybutyric acid) accumulated by Azotobacter chroococcum MAL-201.
    Saha SP; Paul AK
    Roum Arch Microbiol Immunol; 2005; 64(1-4):50-6. PubMed ID: 17405315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source.
    García-Esquivel G; Calva-Calva G; Ferrera-Cerrato R; Fernández-Linares LC; Vázquez RR; Esparza-García FJ
    Arch Microbiol; 2009 Mar; 191(3):275-81. PubMed ID: 19018516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analogue-resistant mutants of Azotobacter chroococcum derepressed for nitrogenase activity and early ammonia excretion having potential as inoculants for cereal crops.
    Lakshminarayana K; Shukla B; Sindhu SS; Kumari P; Narula N; Sheoran RK
    Indian J Exp Biol; 2000 Apr; 38(4):373-8. PubMed ID: 11218815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Growth of Azotobacter chroococcum strains on different substrates].
    Goncharova LF; Disler EN; Bezborodov AM
    Mikrobiologiia; 1975; 44(1):86-90. PubMed ID: 1160641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herbicidal effect on some metabolic processes of Azotobacter chroococcum.
    Pietr SJ
    Acta Microbiol Pol; 1981; 30(2):173-82. PubMed ID: 6168178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the effects of metals on phenol oxidase-producing nitrogen-fixing Azotobacter chroococcum.
    Herter S; Schmidt M; Thompson ML; Mikolasch A; Schauer F
    J Basic Microbiol; 2013 Jun; 53(6):509-17. PubMed ID: 22961388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Isolation and characterization of Azotobacter sp. for the production of poly-beta-hydroxyalkanoates].
    Quagliano JC; Alegre P; Miyazaki SS
    Rev Argent Microbiol; 1994; 26(1):21-7. PubMed ID: 7938497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.