These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7873339)

  • 1. Estimation of bacterial growth rates from turbidimetric and viable count data.
    Dalgaard P; Ross T; Kamperman L; Neumeyer K; McMeekin TA
    Int J Food Microbiol; 1994 Nov; 23(3-4):391-404. PubMed ID: 7873339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of temperature dependent growth rate and lag time of Listeria monocytogenes by optical density measurements.
    Augustin JC; Rosso L; Carlier V
    J Microbiol Methods; 1999 Oct; 38(1-2):137-46. PubMed ID: 10520594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models.
    Dalgaard P; Koutsoumanis K
    J Microbiol Methods; 2001 Jan; 43(3):183-96. PubMed ID: 11118653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whey protein isolate/cellulose nanofibre/TiO
    Alizadeh Sani M; Ehsani A; Hashemi M
    Int J Food Microbiol; 2017 Jun; 251():8-14. PubMed ID: 28376399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth inhibition of selected food-borne bacteria, particularly Listeria monocytogenes, by plant extracts.
    Chung KT; Thomasson WR; Wu-Yuan CD
    J Appl Bacteriol; 1990 Oct; 69(4):498-503. PubMed ID: 2127264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated turbidimetry for rapid determination of the bacteriological quality of raw meat and processed meat products.
    Schulz E; Jensen B; Celerynova E
    Int J Food Microbiol; 1988 May; 6(3):219-27. PubMed ID: 3275300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the traditional method of counting viable cells and a quick microplate method for monitoring the growth characteristics of Listeria monocytogenes.
    Horáková K; Greifová M; Seemannová Z; Gondová B; Wyatt GM
    Lett Appl Microbiol; 2004; 38(3):181-4. PubMed ID: 14962037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of microbiological and physicochemical methods for enumeration of microorganisms.
    Szermer-Olearnik B; Sochocka M; Zwolińska K; Ciekot J; Czarny A; Szydzik J; Kowalski K; Boratyński J
    Postepy Hig Med Dosw (Online); 2014 Jan; 68():1392-6. PubMed ID: 25531702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths.
    Al-Zeyara SA; Jarvis B; Mackey BM
    Int J Food Microbiol; 2011 Jan; 145(1):98-105. PubMed ID: 21176988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads.
    Neumeyer K; Ross T; McMeekin TA
    Int J Food Microbiol; 1997 Aug; 38(1):45-54. PubMed ID: 9498136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain.
    Arqués JL; Rodríguez E; Nuñez M; Medina M
    J Dairy Sci; 2008 Jan; 91(1):70-5. PubMed ID: 18096926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The challenge of enumerating Listeria monocytogenes in food.
    Auvolat A; Besse NG
    Food Microbiol; 2016 Feb; 53(Pt B):135-49. PubMed ID: 26678141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of indirect impedance for measuring microbial growth in complex food matrices.
    Johnson N; Chang Z; Bravo Almeida C; Michel M; Iversen C; Callanan M
    Food Microbiol; 2014 Sep; 42():8-13. PubMed ID: 24929710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioluminescence assay for estimating the hydrophobic properties of bacteria as revealed by hydrophobic interaction chromatography.
    Mafu AA; Roy D; Savoie L; Goulet J
    Appl Environ Microbiol; 1991 Jun; 57(6):1640-3. PubMed ID: 1908207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of micro-architectural structure of cabbage substratum and or background bacterial flora on the growth of Listeria monocytogenes.
    Ongeng D; Ryckeboer J; Vermeulen A; Devlieghere F
    Int J Food Microbiol; 2007 Nov; 119(3):291-9. PubMed ID: 17910986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chitosan films on the growth of Listeria monocytogenes, Staphylococcus aureus and Salmonella spp. in laboratory media and in fish soup.
    Fernandez-Saiz P; Soler C; Lagaron JM; Ocio MJ
    Int J Food Microbiol; 2010 Feb; 137(2-3):287-94. PubMed ID: 20022649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous construction of PCR-DGGE-based predictive models of Listeria monocytogenes and Vibrio parahaemolyticus on cooked shrimps.
    Liao C; Peng ZY; Li JB; Cui XW; Zhang ZH; Malakar PK; Zhang WJ; Pan YJ; Zhao Y
    Lett Appl Microbiol; 2015 Mar; 60(3):210-6. PubMed ID: 25470339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods and media for the isolation and cultivation of Listeria monocytogenes from various foods.
    Brackett RE; Beuchat LR
    Int J Food Microbiol; 1989 Jun; 8(3):219-23. PubMed ID: 2518380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparison of direct colony count methods and the MPN-method for quantitative detection of Listeria in model and field conditions].
    Hildebrandt G; Schott W
    Berl Munch Tierarztl Wochenschr; 2001; 114(11-12):453-64. PubMed ID: 11766274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.