These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7873515)

  • 1. Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.
    Vert M; Li SM; Garreau H
    J Biomater Sci Polym Ed; 1994; 6(7):639-49. PubMed ID: 7873515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.
    Li S
    J Biomed Mater Res; 1999; 48(3):342-53. PubMed ID: 10398040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of PLA/GA polymers: increasing complexity.
    Vert M; Mauduit J; Li S
    Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence.
    Grizzi I; Garreau H; Li S; Vert M
    Biomaterials; 1995 Mar; 16(4):305-11. PubMed ID: 7772670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo degradation of massive poly(alpha-hydroxy acids): validation of in vitro findings.
    Therin M; Christel P; Li S; Garreau H; Vert M
    Biomaterials; 1992; 13(9):594-600. PubMed ID: 1391406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on the in vitro degradation of poly(lactic acid).
    Migliaresi C; Fambri L; Cohn D
    J Biomater Sci Polym Ed; 1994; 5(6):591-606. PubMed ID: 8086385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation and degradation behavior of PELGE nanoparticles].
    Duan Y; Zhang Z; Tang Y; Lin Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):921-5. PubMed ID: 15646333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and biodegradability of a binary blend of poly((R)-3-hydroxybutyric acid) and poly((R,S)-lactic acid).
    Koyama N; Doi Y
    Can J Microbiol; 1995; 41 Suppl 1():316-22. PubMed ID: 7606667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Progress in the study of pH and temperature sensitive biodegradable block copolymers].
    Hao TN; Qiao MX; Li Z; Chen DW
    Yao Xue Xue Bao; 2008 Feb; 43(2):123-7. PubMed ID: 18507336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity test of biodegradable polymers by implantation in rabbit cornea.
    Kobayashi H; Shiraki K; Ikada Y
    J Biomed Mater Res; 1992 Nov; 26(11):1463-76. PubMed ID: 1332973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of MeO-PEG-PLGA-PEG-OMe copolymers as drug carriers and their degradation behavior in vitro.
    Duan Y; Zhang Y; Gong T; Zhang Z
    J Mater Sci Mater Med; 2007 Oct; 18(10):2067-73. PubMed ID: 17558481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protease-catalyzed oligomerization and hydrolysis of alkyl lactates involving L-enantioselective deacylation step.
    Ohara H; Nishioka E; Yamaguchi S; Kawai F; Kobayashi S
    Biomacromolecules; 2011 Oct; 12(10):3833-7. PubMed ID: 21870833
    [No Abstract]   [Full Text] [Related]  

  • 13. Poly(L-lactide): a long-term degradation study in vivo. Part III. Analytical characterization.
    Pistner H; Bendix DR; Mühling J; Reuther JF
    Biomaterials; 1993; 14(4):291-8. PubMed ID: 8476999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro degradation of glycine/DL-lactic acid copolymers.
    Helder J; Dijkstra PJ; Feijen J
    J Biomed Mater Res; 1990 Aug; 24(8):1005-20. PubMed ID: 2394759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters.
    Antheunis H; van der Meer JC; de Geus M; Heise A; Koning CE
    Biomacromolecules; 2010 Apr; 11(4):1118-24. PubMed ID: 20187614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo characteristics of low molecular weight copolymers composed of L-lactic acid and various DL-hydroxy acids as biodegradable carriers for drug delivery systems.
    Fukuzaki H; Yoshida M; Asano M; Kumakura M; Mashimo T; Yuasa H; Imai K; Yamanaka H
    Biomaterials; 1990 Aug; 11(6):441-6. PubMed ID: 2207236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-DL-lactic acid: polyethylene glycol block copolymers. The influence of polyethylene glycol on the degradation of poly-DL-lactic acid.
    Shah SS; Zhu KJ; Pitt CG
    J Biomater Sci Polym Ed; 1994; 5(5):421-31. PubMed ID: 8038137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite biomaterials based on ceramic polymers. I. Reinforced systems based on Al2O3/PMMA/PLLA.
    Rodríguez-Lorenzo LM; Salinas AJ; Vallet-Regí M; San Román J
    J Biomed Mater Res; 1996 Apr; 30(4):515-22. PubMed ID: 8847360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable tablets having a matrix of low molecular weight poly-L-lactic acid and poly-D,L-lactic acid.
    Moll F; Köller G
    Arch Pharm (Weinheim); 1990 Oct; 323(10):887-8. PubMed ID: 2080895
    [No Abstract]   [Full Text] [Related]  

  • 20. Injectable microcapsules prepared with biodegradable poly(alpha-hydroxy) acids for prolonged release of drugs.
    Ogawa Y
    J Biomater Sci Polym Ed; 1997; 8(5):391-409. PubMed ID: 9105978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.