These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7873546)

  • 1. Mapping the heparin-binding site of mucus proteinase inhibitor.
    Mellet P; Ermolieff J; Bieth JG
    Biochemistry; 1995 Feb; 34(8):2645-52. PubMed ID: 7873546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of neutrophil cathepsin G by oxidized mucus proteinase inhibitor. Effect of heparin.
    Boudier C; Cadène M; Bieth JG
    Biochemistry; 1999 Jun; 38(26):8451-7. PubMed ID: 10387091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of low molecular mass heparin on the kinetics of neutrophil elastase inhibition by mucus proteinase inhibitor.
    Cadène M; Boudier C; de Marcillac GD; Bieth JG
    J Biol Chem; 1995 Jun; 270(22):13204-9. PubMed ID: 7768918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin.
    Ermolieff J; Duranton J; Petitou M; Bieth JG
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1369-74. PubMed ID: 9494108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of heparin to human antithrombin III activates selective chemical modification at lysine 236. Lys-107, Lys-125, and Lys-136 are situated within the heparin-binding site of antithrombin III.
    Chang JY
    J Biol Chem; 1989 Feb; 264(6):3111-5. PubMed ID: 2492530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heparin-induced conformational change and activation of mucus proteinase inhibitor.
    Faller B; Mely Y; Gerard D; Bieth JG
    Biochemistry; 1992 Sep; 31(35):8285-90. PubMed ID: 1525165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antithrombin P1 residue is important for target proteinase specificity but not for heparin activation of the serpin. Characterization of P1 antithrombin variants with altered proteinase specificity but normal heparin activation.
    Chuang YJ; Swanson R; Raja SM; Bock SC; Olson ST
    Biochemistry; 2001 Jun; 40(22):6670-9. PubMed ID: 11380262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and characterization of recombinant second domain variants of human mucus proteinase inhibitor (MPI).
    Meckelein B; Kemme M; Nikiforov T; Appelhans H; Gassen HG
    Biomed Biochim Acta; 1991; 50(4-6):673-6. PubMed ID: 1801741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of the N-terminal domain of secretory leukoprotease inhibitor.
    Ying QL; Kemme M; Simon SR
    Biochemistry; 1994 May; 33(18):5445-50. PubMed ID: 7910033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that arginine-129 and arginine-145 are located within the heparin binding site of human antithrombin III.
    Sun XJ; Chang JY
    Biochemistry; 1990 Sep; 29(38):8957-62. PubMed ID: 2271571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and characterization of elastase inhibitors from the ascarid nematodes Anisakis simplex and Ascaris suum.
    Nguyen TT; Qasim MA; Morris S; Lu CC; Hill D; Laskowski M; Sakanari JA
    Mol Biochem Parasitol; 1999 Jul; 102(1):79-89. PubMed ID: 10477178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine-heparin interactions in antithrombin. Properties of K125M and K290M,K294M,K297M variants.
    Fan B; Turko IV; Gettins PG
    Biochemistry; 1994 Nov; 33(47):14156-61. PubMed ID: 7947827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heparin binding site of human extracellular-superoxide dismutase.
    Adachi T; Kodera T; Ohta H; Hayashi K; Hirano K
    Arch Biochem Biophys; 1992 Aug; 297(1):155-61. PubMed ID: 1637178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human mucus protease inhibitor and its mutants are novel defensive compounds against infection with influenza A and Sendai viruses.
    Kido H; Beppu Y; Imamura Y; Chen Y; Murakami M; Oba K; Towatari T
    Biopolymers; 1999; 51(1):79-86. PubMed ID: 10380355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites.
    Cooley J; Takayama TK; Shapiro SD; Schechter NM; Remold-O'Donnell E
    Biochemistry; 2001 Dec; 40(51):15762-70. PubMed ID: 11747453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of polynucleotides on the inhibition of neutrophil elastase by mucus proteinase inhibitor and alpha 1-proteinase inhibitor.
    Belorgey D; Bieth JG
    Biochemistry; 1998 Nov; 37(46):16416-22. PubMed ID: 9819234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution.
    Tsunemi M; Matsuura Y; Sakakibara S; Katsube Y
    Biochemistry; 1996 Sep; 35(36):11570-6. PubMed ID: 8794736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate, the slime exopolysaccharide of Pseudomonas aeruginosa, binds human leukocyte elastase, retards inhibition by alpha 1-proteinase inhibitor, and accelerates inhibition by secretory leukoprotease inhibitor.
    Ying QL; Kemme M; Simon SR
    Am J Respir Cell Mol Biol; 1996 Aug; 15(2):283-91. PubMed ID: 8703486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of the specificity of ecotin, an E. coli serine proteinase inhibitor, by site directed mutagenesis.
    Pál G; Sprengel G; Patthy A; Gráf L
    FEBS Lett; 1994 Mar; 342(1):57-60. PubMed ID: 8143850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: functional and structural investigation.
    Heinz DW; Hyberts SG; Peng JW; Priestle JP; Wagner G; Grütter MG
    Biochemistry; 1992 Sep; 31(37):8755-66. PubMed ID: 1390662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.