BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7873678)

  • 21. Identification of tryptophan and tyrosine residues in peptides separated by capillary electrophoresis by their second-derivative spectra using diode-array detection.
    Grimm R; Graf A; Heiger DN
    J Chromatogr A; 1994 Sep; 679(1):173-80. PubMed ID: 7951988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Conformational states of aspartate-aminotransferase as studied by solvent perturbation difference spectroscopy. II. Perturbation of the UV-absorption spectra of the protein by the coenzyme and ethylene glycol].
    Kogan GA; Bocharov AL; Karpeĭskiĭ MIa
    Mol Biol; 1974; 8(5):762-7. PubMed ID: 4469584
    [No Abstract]   [Full Text] [Related]  

  • 23. The determination of tryptophan and tyrosine in native proteins on the basis of inner filter effect in spectrofluorimetry.
    Jankowski A; Siemion IZ
    Acta Biochim Pol; 1977; 24(1):13-20. PubMed ID: 868434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectrophotometric resolution of ternary mixtures of tryptophan, tyrosine, and histidine with the aid of principal component-artificial neural network models.
    Hasani M; Moloudi M; Emami F
    Anal Biochem; 2007 Nov; 370(1):68-76. PubMed ID: 17662683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of ultraviolet light on the UV/VIS absorption spectrum of components of Eagle (MEM) cell culture medium].
    Bollmann G; Redmann K
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1990; 117(1):201-7. PubMed ID: 1695177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of tryptophan, tyrosine, and phenylalanine by second derivative spectrophotometry.
    Nozaki Y
    Arch Biochem Biophys; 1990 Mar; 277(2):324-33. PubMed ID: 2310197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Simultaneous determination of tryptophan, tyrosine and phenylalanine in injection by derivative fluorescent PLS method].
    Ding Y; Su Q; Wu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Apr; 21(2):212-4. PubMed ID: 12947624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of indole chemistry to label tryptophan residues in protein for determination of tryptophan surface accessibility.
    Ladner CL; Turner RJ; Edwards RA
    Protein Sci; 2007 Jun; 16(6):1204-13. PubMed ID: 17525468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal stabilization of multimeric proteins: a case study with alpha-globulin.
    Radha C; Muralidhara BK; Kumar PR; Tasneem R; Prakash V
    Indian J Biochem Biophys; 1998 Apr; 35(2):76-85. PubMed ID: 9753865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural transitions of bovine plasma albumin. Location of tyrosyl and tryptophyl residues by solvent perturbation difference spectra.
    Sogami M; Ogura S
    J Biochem; 1973 Feb; 73(2):323-34. PubMed ID: 4736239
    [No Abstract]   [Full Text] [Related]  

  • 32. Quantitative chromatography of aromatic amino acids on Sephadex G-10.
    Kowalska B
    Acta Biochim Pol; 1969; 16(2):141-50. PubMed ID: 5346709
    [No Abstract]   [Full Text] [Related]  

  • 33. Solvent accessible surface area of amino acid residues in globular proteins: correlation of apparent transfer free energies with experimental hydrophobicity scales.
    Shaytan AK; Shaitan KV; Khokhlov AR
    Biomacromolecules; 2009 May; 10(5):1224-37. PubMed ID: 19334678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Determination of tyrosine and tryptophan in protein solutions and on tissue sections by modified absorption spectra in ultraviolet rays].
    BRODSKII VIa; LIMARENKO IM
    Dokl Akad Nauk SSSR; 1954 Mar; 95(2):313-6. PubMed ID: 13161758
    [No Abstract]   [Full Text] [Related]  

  • 35. AM1/CI, CNDO/S and ZINDO/S computations of absorption bands and their intensities in the UV spectra of some 4(3H)-quinazolinones.
    Eshimbetov AG; Kristallovich EL; Abdullaev ND; Tulyaganov TS; Shakhidoyatov KhM
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):299-307. PubMed ID: 16495133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QBES: predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization.
    Xu Z; Zhang C; Liu S; Zhou Y
    Proteins; 2006 Jun; 63(4):961-6. PubMed ID: 16514609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of UV-Vis absorption spectroscopy for studies of natively disordered proteins.
    Permyakov EA
    Methods Mol Biol; 2012; 895():421-33. PubMed ID: 22760331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction and evolutionary information analysis of protein solvent accessibility using multiple linear regression.
    Wang JY; Lee HM; Ahmad S
    Proteins; 2005 Nov; 61(3):481-91. PubMed ID: 16170780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SVM-Cabins: prediction of solvent accessibility using accumulation cutoff set and support vector machine.
    Wang JY; Lee HM; Ahmad S
    Proteins; 2007 Jul; 68(1):82-91. PubMed ID: 17436325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gradient elution isotachophoresis with direct ultraviolet absorption detection for sensitive amino acid analysis.
    Mamunooru M; Jenkins RJ; Davis NI; Shackman JG
    J Chromatogr A; 2008 Aug; 1202(2):203-11. PubMed ID: 18644605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.