BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7873678)

  • 41. Surface topography of immunoglobulin molecules. I. Accessibility of aromatic chromophores of rabbit IgG.
    BiaƂkowska H; Morawiecki A
    Arch Immunol Ther Exp (Warsz); 1978; 26(1-6):43-8. PubMed ID: 749792
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Examination of phenylalanine microenvironments in proteins by second-derivative absorption spectroscopy.
    Mach H; Thomson JA; Middaugh CR; Lewis RV
    Arch Biochem Biophys; 1991 May; 287(1):33-40. PubMed ID: 1897992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Spectroscopy of intermolecular interactions of a tyrosine chromophore. III. Classification of the state of tyrosine residues in proteins based on their electron spectra].
    Krapunov SN; Dragan AI
    Biofizika; 1989; 34(3):357-63. PubMed ID: 2765567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of tyrosine exposure in proteins by second-derivative spectroscopy.
    Ragone R; Colonna G; Balestrieri C; Servillo L; Irace G
    Biochemistry; 1984 Apr; 23(8):1871-5. PubMed ID: 6722128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The middle ultraviolet spectra of proteins. I. Studies on model compounds.
    A'zary EP; Bigelow CC
    Can J Biochem; 1970 Sep; 48(9):753-61. PubMed ID: 5475471
    [No Abstract]   [Full Text] [Related]  

  • 47. Correcting the circular dichroism spectra of peptides for contributions of absorbing side chains.
    Krittanai C; Johnson WC
    Anal Biochem; 1997 Nov; 253(1):57-64. PubMed ID: 9356142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II.
    Ruan K; Li J; Liang R; Xu C; Yu Y; Lange R; Balny C
    Biochem Biophys Res Commun; 2002 Apr; 293(1):593-7. PubMed ID: 12054643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of peptides containing tryptophan, tyrosine, and phenylalanine using photodiode-array spectrophotometry.
    Yang CY; Pownall HJ; Gotto AM
    Anal Biochem; 1985 Feb; 145(1):67-72. PubMed ID: 3923864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Comparative study of laminarinases from marine mollusks using differential UV-spectrophotometry].
    Lakizova IIu; Eliakova LA
    Biokhimiia; 1983 Oct; 48(10):1654-60. PubMed ID: 6639988
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy.
    McFarland JM; Joshi NS; Francis MB
    J Am Chem Soc; 2008 Jun; 130(24):7639-44. PubMed ID: 18498164
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Picosecond protein response to the chromophore isomerization of photoactive yellow protein: selective observation of tyrosine and tryptophan residues by time-resolved ultraviolet resonance Raman spectroscopy.
    Mizuno M; Hamada N; Tokunaga F; Mizutani Y
    J Phys Chem B; 2007 Jun; 111(23):6293-6. PubMed ID: 17523627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Second derivative spectrophotometry as an effective tool for examining phenylalanine residues in proteins.
    Ichikawa T; Terada H
    Biochim Biophys Acta; 1977 Sep; 494(1):267-70. PubMed ID: 901809
    [TBL] [Abstract][Full Text] [Related]  

  • 54. States of tyrosyl and tryptophyl residues in Bence Jones proteins.
    Azuma T; Hamaguchi K; Migita S
    J Biochem; 1971 Mar; 69(3):535-41. PubMed ID: 5551647
    [No Abstract]   [Full Text] [Related]  

  • 55. Atom-wise statistics and prediction of solvent accessibility in proteins.
    Singh YH; Gromiha MM; Sarai A; Ahmad S
    Biophys Chem; 2006 Nov; 124(2):145-54. PubMed ID: 16860924
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Look-up tables for protein solvent accessibility prediction and nearest neighbor effect analysis.
    Wang JY; Ahmad S; Gromiha MM; Sarai A
    Biopolymers; 2004 Oct; 75(3):209-16. PubMed ID: 15378480
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous determination of tyrosine and tryptophan residues in proteins by second-derivative spectroscopy.
    Servillo L; Colonna G; Balestrieri C; Ragone R; Irace G
    Anal Biochem; 1982 Nov; 126(2):251-7. PubMed ID: 7158764
    [No Abstract]   [Full Text] [Related]  

  • 58. Chemical modifications and dissociation characteristics of tyrosine and tryptophan residues in alpha-crystallin.
    Bera S; Pal J; Roy B; Ghosh SK
    Indian J Biochem Biophys; 1997 Oct; 34(5):419-28. PubMed ID: 9594422
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Absorption of serum in ultraviolet rays in the study of protein composition and aromatic amino acid content. III. Spectrophotometry of normal protein fractions and determination of tyrosine and tryptophan].
    GRANDIS C; VITELLI A
    Arch Sci Biol (Bologna); 1956; 40(6):626-34. PubMed ID: 13395788
    [No Abstract]   [Full Text] [Related]  

  • 60. On the relation between residue flexibility and local solvent accessibility in proteins.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    Proteins; 2009 Aug; 76(3):617-36. PubMed ID: 19274736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.