These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7873707)

  • 1. Phosphocreatine and creatine kinase in energetic metabolism of the porcine carotid artery.
    Clark JF; Dillon PF
    J Vasc Res; 1995; 32(1):24-30. PubMed ID: 7873707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction.
    Uğurbil K; Petein M; Maidan R; Michurski S; From AH
    Biochemistry; 1986 Jan; 25(1):100-7. PubMed ID: 3954984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creatine kinase activity associated with the contractile proteins of the guinea-pig carotid artery.
    Clark JF; Khuchua Z; Boehm E; Ventura-Clapier R
    J Muscle Res Cell Motil; 1994 Aug; 15(4):432-9. PubMed ID: 7806637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain.
    Degani H; Alger JR; Shulman RG; Petroff OA; Prichard JW
    Magn Reson Med; 1987 Jul; 5(1):1-12. PubMed ID: 3657491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function.
    Sauter A; Rudin M
    J Biol Chem; 1993 Jun; 268(18):13166-71. PubMed ID: 8514755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study.
    Bottomley PA; Wu KC; Gerstenblith G; Schulman SP; Steinberg A; Weiss RG
    Circulation; 2009 Apr; 119(14):1918-24. PubMed ID: 19332463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo.
    Bottomley PA; Ouwerkerk R; Lee RF; Weiss RG
    Magn Reson Med; 2002 May; 47(5):850-63. PubMed ID: 11979563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P magnetization transfer studies in the monkey brain.
    Mora BN; Narasimhan PT; Ross BD
    Magn Reson Med; 1992 Jul; 26(1):100-15. PubMed ID: 1625557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite utilization and compartmentation in porcine carotid artery: a study using beta-guanidinopropionic acid.
    Boehm EA; Clark JF; Radda GK
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C628-35. PubMed ID: 7900770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts.
    Schär M; Gabr RE; El-Sharkawy AM; Steinberg A; Bottomley PA; Weiss RG
    J Cardiovasc Magn Reson; 2015 Aug; 17(1):70. PubMed ID: 26253320
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Wang CY; Liu Y; Huang S; Griswold MA; Seiberlich N; Yu X
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 28915341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.
    Neubauer S; Horn M; Naumann A; Tian R; Hu K; Laser M; Friedrich J; Gaudron P; Schnackerz K; Ingwall JS
    J Clin Invest; 1995 Mar; 95(3):1092-100. PubMed ID: 7883957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled in vivo activity of creatine phosphokinase and the membrane-bound (Na+,K+)-ATPase in the resting and stimulated electric organ of the electric fish Narcine brasiliensis.
    Blum H; Balschi JA; Johnson RG
    J Biol Chem; 1991 Jun; 266(16):10254-9. PubMed ID: 1645345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anaerobic metabolic changes on the creatine kinase reaction in frog muscle studied by 31P saturation transfer NMR.
    Yoshizaki K; Nishikawa H; Naruse S
    NMR Biomed; 1991 Feb; 4(1):25-30. PubMed ID: 2029457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.